Home
Class 12
MATHS
The value of lim(x rarr 0) (1-cos2x)/(e^...

The value of `lim_(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x)` is

A

0

B

2

C

4

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{1 - \cos(2x)}{e^{x^2} - e^x + x} \), we can follow these steps: ### Step 1: Check the form of the limit As \( x \to 0 \): - The numerator \( 1 - \cos(2x) \to 1 - 1 = 0 \). - The denominator \( e^{x^2} - e^x + x \to e^0 - e^0 + 0 = 1 - 1 + 0 = 0 \). Since both the numerator and denominator approach 0, we can apply L'Hôpital's Rule. **Hint for Step 1:** Check if the limit is in the indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator. - The derivative of the numerator \( 1 - \cos(2x) \) is \( 2\sin(2x) \). - The derivative of the denominator \( e^{x^2} - e^x + x \) is \( 2xe^{x^2} - e^x + 1 \). Now we rewrite the limit: \[ \lim_{x \to 0} \frac{2\sin(2x)}{2xe^{x^2} - e^x + 1} \] **Hint for Step 2:** Differentiate the numerator and denominator separately. ### Step 3: Evaluate the new limit Now we substitute \( x = 0 \) into the new limit: - The numerator becomes \( 2\sin(2 \cdot 0) = 2 \cdot 0 = 0 \). - The denominator becomes \( 2 \cdot 0 \cdot e^{0} - e^{0} + 1 = 0 - 1 + 1 = 0 \). Again, we have the form \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. **Hint for Step 3:** Substitute \( x = 0 \) into the new limit to check if it's still indeterminate. ### Step 4: Differentiate again Differentiate the numerator and denominator again: - The derivative of the numerator \( 2\sin(2x) \) is \( 4\cos(2x) \). - The derivative of the denominator \( 2xe^{x^2} - e^x + 1 \) is \( 2e^{x^2} + 4x^2e^{x^2} - e^x \). Now we rewrite the limit: \[ \lim_{x \to 0} \frac{4\cos(2x)}{2e^{x^2} + 4x^2e^{x^2} - e^x} \] **Hint for Step 4:** Differentiate both the numerator and denominator again. ### Step 5: Substitute \( x = 0 \) again Now substitute \( x = 0 \): - The numerator becomes \( 4\cos(2 \cdot 0) = 4 \cdot 1 = 4 \). - The denominator becomes \( 2e^{0} + 4 \cdot 0^2 \cdot e^{0} - e^{0} = 2 - 1 = 1 \). Now we have: \[ \lim_{x \to 0} \frac{4}{1} = 4 \] ### Final Answer Thus, the value of the limit is: \[ \boxed{4} \]

To solve the limit \( \lim_{x \to 0} \frac{1 - \cos(2x)}{e^{x^2} - e^x + x} \), we can follow these steps: ### Step 1: Check the form of the limit As \( x \to 0 \): - The numerator \( 1 - \cos(2x) \to 1 - 1 = 0 \). - The denominator \( e^{x^2} - e^x + x \to e^0 - e^0 + 0 = 1 - 1 + 0 = 0 \). Since both the numerator and denominator approach 0, we can apply L'Hôpital's Rule. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Archives JEE ADVANCED|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(1-cos 2x)/(x^(2))

The value of : lim_(x rarr0)(cosx-1)/(x) is

lim_(x rarr0)x(cosec x)

The value of lim_(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

lim_(x rarr0)(1+2x)^(5/x)

lim_(x rarr0)(1/x)^(1-cos x)

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

Evaluate: lim_(x->0) (1-cos2x)/(x^2)

The value of lim_(xrarr0^(+))((1-cos(sin^(2)x))/(x^(2)))^((log_(e)(1-2x^(2)))/(sin^(2)x)) is

lim_(x rarr0)|x|^|cos x|