Home
Class 12
MATHS
Let a vector veca =alpha hati + 2hatj +...

Let a vector `veca =alpha hati + 2hatj + beta hatk` `(alpha, beta in R)`,`veca` lies in the plane of the vectors, ` vecb= hati + hatj` and `vecc= hati -hatj+4hatk`. If `veca` bisects the angle between `vecb and vecc`, then :

A

(a)`vec a* veci +3 =0`

B

(b)`vec a*hati + 1=0`

C

(c)`vec a * hatk+2=0`

D

(d)`veca*hatk +4=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \(\vec{a}\) that bisects the angle between the vectors \(\vec{b}\) and \(\vec{c}\). Let's break down the steps to find \(\vec{a}\). ### Step 1: Identify the vectors Given: - \(\vec{a} = \alpha \hat{i} + 2 \hat{j} + \beta \hat{k}\) - \(\vec{b} = \hat{i} + \hat{j}\) - \(\vec{c} = \hat{i} - \hat{j} + 4 \hat{k}\) ### Step 2: Calculate the magnitudes of \(\vec{b}\) and \(\vec{c}\) 1. Magnitude of \(\vec{b}\): \[ |\vec{b}| = \sqrt{1^2 + 1^2} = \sqrt{2} \] 2. Magnitude of \(\vec{c}\): \[ |\vec{c}| = \sqrt{1^2 + (-1)^2 + 4^2} = \sqrt{1 + 1 + 16} = \sqrt{18} = 3\sqrt{2} \] ### Step 3: Use the angle bisector formula The vector that bisects the angle between \(\vec{b}\) and \(\vec{c}\) can be expressed as: \[ \vec{a} = k \left( \frac{\vec{b}}{|\vec{b}|} + \frac{\vec{c}}{|\vec{c}|} \right) \] where \(k\) is a scalar. ### Step 4: Substitute the values Substituting the values we calculated: \[ \vec{a} = k \left( \frac{\hat{i} + \hat{j}}{\sqrt{2}} + \frac{\hat{i} - \hat{j} + 4\hat{k}}{3\sqrt{2}} \right) \] ### Step 5: Simplify the expression Combine the two vectors: \[ \vec{a} = k \left( \frac{1}{\sqrt{2}}(\hat{i} + \hat{j}) + \frac{1}{3\sqrt{2}}(\hat{i} - \hat{j} + 4\hat{k}) \right) \] Finding a common denominator: \[ \vec{a} = k \left( \frac{3}{3\sqrt{2}}(\hat{i} + \hat{j}) + \frac{1}{3\sqrt{2}}(\hat{i} - \hat{j} + 4\hat{k}) \right) \] \[ = k \left( \frac{3\hat{i} + 3\hat{j} + \hat{i} - \hat{j} + 4\hat{k}}{3\sqrt{2}} \right) \] \[ = k \left( \frac{(3+1)\hat{i} + (3-1)\hat{j} + 4\hat{k}}{3\sqrt{2}} \right) \] \[ = k \left( \frac{4\hat{i} + 2\hat{j} + 4\hat{k}}{3\sqrt{2}} \right) \] ### Step 6: Set coefficients equal From \(\vec{a} = \alpha \hat{i} + 2 \hat{j} + \beta \hat{k}\), we can equate coefficients: - Coefficient of \(\hat{i}\): \(\alpha = \frac{4k}{3\sqrt{2}}\) - Coefficient of \(\hat{j}\): \(2 = \frac{2k}{3\sqrt{2}}\) - Coefficient of \(\hat{k}\): \(\beta = \frac{4k}{3\sqrt{2}}\) ### Step 7: Solve for \(k\) From the equation \(2 = \frac{2k}{3\sqrt{2}}\): \[ k = 2 \cdot \frac{3\sqrt{2}}{2} = 3\sqrt{2} \] ### Step 8: Substitute \(k\) back to find \(\alpha\) and \(\beta\) Substituting \(k\) back: - \(\alpha = \frac{4(3\sqrt{2})}{3\sqrt{2}} = 4\) - \(\beta = \frac{4(3\sqrt{2})}{3\sqrt{2}} = 4\) ### Final Result Thus, the vector \(\vec{a}\) becomes: \[ \vec{a} = 4 \hat{i} + 2 \hat{j} + 4 \hat{k} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise MATH|21 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|2 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR ENGLISH|Exercise All Questions|445 Videos

Similar Questions

Explore conceptually related problems

The angle between the two vectors vecA=hati+2hatj-hatk and vecB=-hati+hatj-2hatk

If vecA=2hati-2hatj-hatk and vecB=hati+hatj , then : (a) Find angle between vecA and vecB .

Knowledge Check

  • The projection of the vector vecA = hati - 2hatj + hatk on the vector vecB = 4hati - 4hatj + 7hatk is

    A
    `(19)/(9)`
    B
    `(38)/(9)`
    C
    `(8)/(9)`
    D
    `(4)/(9)`
  • Similar Questions

    Explore conceptually related problems

    If vecA 2 hati +hatj -hatk, vecB=hati +2hatj +3hatk, vecC=6hati -2hatj-6hatk angle between (vecA+vecB) and vecC will be

    If a=4hati+2hatj-hatk and vecb=5hati+2hatj-3hatk find the angle between the vectors veca+vecb and veca-vecb

    Given the vector vecA=2hati+3hatj-hatk, vecB=3hati-2hatj-2hatk & vecC=phati+phatj+phatk . Find the angle between (vecA-vecB) &vecC

    Find the projection of the vector veca=3hati+2hatj-4hatk on the vector vecb=hati+2hatj+hatk .

    Let veca=hati+hatj+hatk, vecb=hati-hatj+hat2k and vecc=xhati+(x-2)hatj-hatk . If the vector vecc lies in the plane of veca and vecb then x equals

    Find the vector of magnitude 3, bisecting the angle between the vectors veca=2hati+hatj-hatk and vecb=hati-2hatj+hatk .

    Let veca=hati+2hatj+3hati, vecb=hati-hatj+2hatk and vecc=(x-2)hati-(x-3)hatj-hatk . If vecc lies in the plane of veca and vecb , then (1)/(x) is equal to