Home
Class 12
CHEMISTRY
Assuming ideal behaviour , the magnitude...

Assuming ideal behaviour , the magnitude of log K for the following reaction at ` 25^(@)C` is ` x xx 10^(-1)`. The value of x is _______. (Integer answer )
`3HC -= CH_((g)) iff C_6H_(6(l))`
[Given : `Delta_f G^(@) (HC -= CH) = -2.04 xx 10^(5) J "mol"^(-1), Delta_f G^(@)(C_6 H_6) = -1.24 xx 10^(5) J " mol"^(-1) , R = 8.314 JK^(-1) " mol"^(-1)`]

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the value of \( \log K \) for the given reaction at \( 25^\circ C \) using the provided Gibbs free energy values. Here’s the step-by-step solution: ### Step 1: Write the Reaction The reaction given is: \[ 3HC \rightleftharpoons C_6H_6(l) \] ### Step 2: Identify the Gibbs Free Energy Values From the problem, we have: - \( \Delta_f G^\circ (HC \rightleftharpoons CH) = -2.04 \times 10^5 \, \text{J/mol} \) - \( \Delta_f G^\circ (C_6H_6) = -1.24 \times 10^5 \, \text{J/mol} \) ### Step 3: Calculate \( \Delta G^\circ \) for the Reaction Using the formula: \[ \Delta G^\circ_{\text{reaction}} = \Delta G^\circ_{\text{products}} - \Delta G^\circ_{\text{reactants}} \] For our reaction: \[ \Delta G^\circ_{\text{reaction}} = \Delta G^\circ (C_6H_6) - 3 \times \Delta G^\circ (HC) \] Substituting the values: \[ \Delta G^\circ_{\text{reaction}} = -1.24 \times 10^5 - 3 \times (-2.04 \times 10^5) \] Calculating: \[ \Delta G^\circ_{\text{reaction}} = -1.24 \times 10^5 + 6.12 \times 10^5 \] \[ \Delta G^\circ_{\text{reaction}} = 4.88 \times 10^5 \, \text{J/mol} \] ### Step 4: Use the Relationship Between \( \Delta G^\circ \) and \( K \) The relationship is given by: \[ \Delta G^\circ = -RT \ln K \] We can convert this to logarithm base 10: \[ \Delta G^\circ = -2.303RT \log K \] ### Step 5: Solve for \( \log K \) Rearranging gives: \[ \log K = -\frac{\Delta G^\circ}{2.303RT} \] Substituting the values: - \( R = 8.314 \, \text{J/(K mol)} \) - \( T = 298 \, \text{K} \) Now substituting: \[ \log K = -\frac{4.88 \times 10^5}{2.303 \times 8.314 \times 298} \] ### Step 6: Calculate the Denominator Calculating the denominator: \[ 2.303 \times 8.314 \times 298 \approx 5708.5 \] ### Step 7: Calculate \( \log K \) Now substituting back: \[ \log K = -\frac{4.88 \times 10^5}{5708.5} \approx -85.5 \] ### Step 8: Express in Required Format We need to express this in the form \( x \times 10^{-1} \): \[ \log K \approx -855 \times 10^{-1} \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{855} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise CHEMISTRY (SECTION-A)|20 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise CHEMISTRY (SECTION-B)|10 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-A|100 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise CHEMISTRY|150 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|561 Videos