Home
Class 12
MATHS
Find sin^(-1)(sintheta).cos^(-1)(costhet...

Find `sin^(-1)(sintheta).cos^(-1)(costheta),tan^(-1)(tantheta),cot^(-1)(cottheta)` for `theta in ((5pi)/2,3pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the following expressions for \( \theta \) in the interval \( \left(\frac{5\pi}{2}, 3\pi\right) \): 1. \( \sin^{-1}(\sin \theta) \) 2. \( \cos^{-1}(\cos \theta) \) 3. \( \tan^{-1}(\tan \theta) \) 4. \( \cot^{-1}(\cot \theta) \) ### Step 1: Determine the Range of \( \theta \) Given \( \theta \) is in the interval \( \left(\frac{5\pi}{2}, 3\pi\right) \): - Convert \( \frac{5\pi}{2} \) to degrees: \[ \frac{5\pi}{2} = \frac{5 \times 180}{2} = 450^\circ \] - Convert \( 3\pi \) to degrees: \[ 3\pi = 3 \times 180 = 540^\circ \] Thus, \( \theta \) is in the interval \( (450^\circ, 540^\circ) \). ### Step 2: Evaluate \( \sin^{-1}(\sin \theta) \) In the interval \( (450^\circ, 540^\circ) \): - The sine function is periodic with a period of \( 360^\circ \). - We can express \( \theta \) as: \[ \theta = 450^\circ + x \quad \text{where } 0 < x < 90^\circ \] - Therefore, \( \sin \theta = \sin(450^\circ + x) = \sin(90^\circ + x) = \cos x \). - Since \( \sin^{-1}(\sin \theta) \) will yield the principal value: \[ \sin^{-1}(\sin \theta) = 3\pi - \theta \] ### Step 3: Evaluate \( \cos^{-1}(\cos \theta) \) In the interval \( (450^\circ, 540^\circ) \): - The cosine function is also periodic with a period of \( 360^\circ \). - We can express \( \theta \) as: \[ \theta = 450^\circ + x \quad \text{where } 0 < x < 90^\circ \] - Therefore, \( \cos \theta = \cos(450^\circ + x) = \cos(90^\circ + x) = -\sin x \). - Since \( \cos^{-1}(\cos \theta) \) will yield: \[ \cos^{-1}(\cos \theta) = \theta - 2\pi \] ### Step 4: Evaluate \( \tan^{-1}(\tan \theta) \) In the interval \( (450^\circ, 540^\circ) \): - The tangent function is periodic with a period of \( 180^\circ \). - We can express \( \theta \) as: \[ \theta = 450^\circ + x \quad \text{where } 0 < x < 90^\circ \] - Therefore, \( \tan \theta = \tan(450^\circ + x) = \tan(x) \). - Thus, we have: \[ \tan^{-1}(\tan \theta) = \theta - \pi \] ### Step 5: Evaluate \( \cot^{-1}(\cot \theta) \) In the interval \( (450^\circ, 540^\circ) \): - The cotangent function is periodic with a period of \( 180^\circ \). - We can express \( \theta \) as: \[ \theta = 450^\circ + x \quad \text{where } 0 < x < 90^\circ \] - Therefore, \( \cot \theta = \cot(450^\circ + x) = -\tan(x) \). - Thus, we have: \[ \cot^{-1}(\cot \theta) = \theta - 2\pi \] ### Final Answers 1. \( \sin^{-1}(\sin \theta) = 3\pi - \theta \) 2. \( \cos^{-1}(\cos \theta) = \theta - 2\pi \) 3. \( \tan^{-1}(\tan \theta) = \theta - \pi \) 4. \( \cot^{-1}(\cot \theta) = \theta - 2\pi \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If sintheta=3/5 , evaluate (costheta-1/(tantheta))/(2cottheta)

(sin^3theta-cos^3theta)/(sintheta-costheta)-(costheta)/(sqrt(1+cot^2theta))-2tanthetacottheta=-1 if theta in (0,pi/2) (b) theta in (pi/2,pi) theta in (pi,(3pi)/2) (d) theta in ((3pi)/2,2pi)

If 1/2sin^(-1)[(3sin2theta)/(5+4cos2theta)]=tan^(-1)x ,t h e nx= (a) tan3theta (b) 3tantheta (c) (1/3)tantheta (d) 3cottheta

Prove that (1+costheta-sin^(2)theta)/(sintheta(1+costheta))=cottheta

Prove: (1+costheta-sin^2theta)/(sintheta(1+costheta))= cottheta

Prove: (1+tan^2theta)/(1+cot^2theta)=((1-tantheta)/(1-cottheta))^2=tan^2theta

The value of the expression sin^(-1)(sin(22pi)/7)cos^(-1)(cos(5pi)/3)+tan^(-1)(tan(5pi)/7)+sin^(-1)(cos2) is (17pi)/(42)-2 (b) -2 (-pi)/(21)-2 (d) non eoft h e s e

Prove that: (1+sintheta-costheta)/(1+sintheta+costheta)=tan(theta/2)

Prove that: (1+sintheta-costheta)/(1+sintheta+costheta)=tantheta/2

Prove: ((1+cot^2theta)tantheta)/(sec^2theta)=cottheta