Home
Class 12
MATHS
Evaluate the following tan^(-1) { tan ...

Evaluate the following
`tan^(-1) { tan (- (7pi)/8)}`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( \tan^{-1} \left( \tan \left( -\frac{7\pi}{8} \right) \right) \), we will follow these steps: ### Step 1: Use the property of tangent We know that: \[ \tan(-\theta) = -\tan(\theta) \] Thus, we can rewrite: \[ \tan \left( -\frac{7\pi}{8} \right) = -\tan \left( \frac{7\pi}{8} \right) \] So, we have: \[ \tan^{-1} \left( \tan \left( -\frac{7\pi}{8} \right) \right) = \tan^{-1} \left( -\tan \left( \frac{7\pi}{8} \right) \right) \] ### Step 2: Use the property of inverse tangent We also know that: \[ \tan^{-1}(-\theta) = -\tan^{-1}(\theta) \] Applying this property gives us: \[ \tan^{-1} \left( -\tan \left( \frac{7\pi}{8} \right) \right) = -\tan^{-1} \left( \tan \left( \frac{7\pi}{8} \right) \right) \] ### Step 3: Determine the value of \( \tan^{-1} \left( \tan \left( \frac{7\pi}{8} \right) \right) \) The function \( \tan^{-1}(\tan(\theta)) \) equals \( \theta \) if \( \theta \) is in the range \( \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \). However, since \( \frac{7\pi}{8} \) is greater than \( \frac{\pi}{2} \), we need to adjust it. We can express \( \frac{7\pi}{8} \) as: \[ \frac{7\pi}{8} = \pi - \frac{\pi}{8} \] Using the property \( \tan(\pi - \theta) = -\tan(\theta) \), we have: \[ \tan\left(\frac{7\pi}{8}\right) = -\tan\left(\frac{\pi}{8}\right) \] ### Step 4: Substitute back into the equation Thus, we can write: \[ \tan^{-1} \left( \tan \left( \frac{7\pi}{8} \right) \right) = \tan^{-1} \left( -\tan \left( \frac{\pi}{8} \right) \right) \] This leads to: \[ \tan^{-1} \left( -\tan \left( \frac{\pi}{8} \right) \right) = -\tan^{-1} \left( \tan \left( \frac{\pi}{8} \right) \right) \] ### Step 5: Evaluate the final expression Since \( \frac{\pi}{8} \) is within the range \( \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \), we have: \[ -\tan^{-1} \left( \tan \left( \frac{\pi}{8} \right) \right) = -\frac{\pi}{8} \] ### Final Result Thus, the value of \( \tan^{-1} \left( \tan \left( -\frac{7\pi}{8} \right) \right) \) is: \[ \boxed{-\frac{\pi}{8}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Find the value of the following: tan^(-1)(tan((7pi)/6))

Evaluate each of the following: tan^(-1)(tan(9pi)/4) (ii) tan^(-1)(tan1) (iii) tan^(-1)(tan2)

Find the principal values of the following (i) tan^(-1) (tan. (2pi)/(3)) (ii) tan^(-1) (tan (-6))

Evaluate the following: 1. sin^(-1)(s i n(2pi)/3) 2. cos^(-1)(c o s(7pi)/6) 3. tan^(-1)(t a n(2pi)/3)

Evaluate the following: (i) tan{2\ tan^(-1)(1/5)-pi/4} (ii) tan(1/2\ sin^(-1)(3/4)

Find the value of : tan^(-1){tan(-(7pi)/8)}

Evaluate each of the following: tan^(-1)(tanpi/3) (ii) tan^(-1)(tan(6pi)/7) (iii) tan^(-1)(tan(7pi)/6)

Evaluate each of the following: tan^(-1)(tan4) (ii) tan^(-1)(tan12)

Evaluate each of the following: sin^(-1)(sin(2pi)/3) (ii) cos^(-1)(cos(7pi)/6) (iii) tan^(-1)(tan(3pi)/4)

Evaluate each of the following: tan(tan^(-1)3/4) (ii) tan(sin^(-1)5/(13)) (iii) tan(cos^(-1)8/(17))