Home
Class 12
MATHS
Find the value of : cos{sin("sin"^(-1)(p...

Find the value of : `cos{sin("sin"^(-1)(pi)/6)}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos\left(\sin^{-1}\left(\frac{\pi}{6}\right)\right) \), we will follow these steps: ### Step 1: Understand the Inverse Function We start with the expression \( \sin^{-1}\left(\frac{\pi}{6}\right) \). The sine inverse function, \( \sin^{-1}(x) \), gives us an angle \( \theta \) such that \( \sin(\theta) = x \). ### Step 2: Check the Validity of \( \frac{\pi}{6} \) However, we must check if \( \frac{\pi}{6} \) is within the valid range for the sine inverse function. The sine function has a range of \([-1, 1]\). Since \( \frac{\pi}{6} \approx 0.5236 \), which is less than 1, it is valid to use. ### Step 3: Evaluate \( \sin(\sin^{-1}(\frac{\pi}{6})) \) Using the property of inverse functions: \[ \sin(\sin^{-1}(x)) = x \quad \text{for } x \in [-1, 1] \] Thus: \[ \sin\left(\sin^{-1}\left(\frac{\pi}{6}\right)\right) = \frac{\pi}{6} \] ### Step 4: Substitute into the Cosine Function Now, we need to find: \[ \cos\left(\sin^{-1}\left(\frac{\pi}{6}\right)\right) \] Using the identity: \[ \cos(\theta) = \sqrt{1 - \sin^2(\theta)} \] we can substitute \( \theta = \sin^{-1}\left(\frac{\pi}{6}\right) \): \[ \cos\left(\sin^{-1}\left(\frac{\pi}{6}\right)\right) = \sqrt{1 - \left(\frac{\pi}{6}\right)^2} \] ### Step 5: Calculate \( \left(\frac{\pi}{6}\right)^2 \) Calculating \( \left(\frac{\pi}{6}\right)^2 \): \[ \left(\frac{\pi}{6}\right)^2 = \frac{\pi^2}{36} \] ### Step 6: Substitute and Simplify Now substituting back: \[ \cos\left(\sin^{-1}\left(\frac{\pi}{6}\right)\right) = \sqrt{1 - \frac{\pi^2}{36}} \] This simplifies to: \[ \cos\left(\sin^{-1}\left(\frac{\pi}{6}\right)\right) = \sqrt{\frac{36 - \pi^2}{36}} = \frac{\sqrt{36 - \pi^2}}{6} \] ### Final Answer Thus, the value of \( \cos\left(\sin^{-1}\left(\frac{\pi}{6}\right)\right) \) is: \[ \frac{\sqrt{36 - \pi^2}}{6} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|4 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Find the value of : sin{cos("cos"^(-1)(3pi)/4)}

Find the value of : cos[(pi)/3-"sin"^(-1)(-1/2)]

Find the value of : sin (sin^(-1) x + cos^(-1) x)

Find the value of sin^(-1) ( cos. ( 33pi)/5) .

Find the value of cos""(pi)/(12)(sin""(5pi)/(12)+cos""(pi)/(4))+sin""(pi)/(12)(cos""(5pi)/(12)-sin""(pi)/(4)) .

Find the value of the following :- sin((pi)/(6))

Find the value of the expression 3[sin^(4)((3pi)/(2)-alpha)+sin^(4)(3pi+alpha)]-2[sin^(6)((pi)/(2)+alpha)+sin^(6)(5pi-alpha)] .

Find the value of the expression 3{sin^4((3pi)/2-theta)+sin^4(3pi+theta)}-2{sin^6(pi/2+theta)+sin^6(5pi-theta)}

Find the value of sin^(-1)(sin(3pi)/5) .

Find the value of sin^(-1)(sin.(5pi)/3) .