Home
Class 12
MATHS
Evaluate sin^(-1) . 4/5 + sin^(-1) . 5/...

Evaluate ` sin^(-1) . 4/5 + sin^(-1) . 5/13 + sin^(-1) . 16/65`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \sin^{-1} \left( \frac{4}{5} \right) + \sin^{-1} \left( \frac{5}{13} \right) + \sin^{-1} \left( \frac{16}{65} \right) \), we will use the formula for the sum of inverse sine functions. ### Step-by-Step Solution: 1. **Identify the formula**: The formula for the sum of two inverse sine functions is: \[ \sin^{-1}(x) + \sin^{-1}(y) = \sin^{-1} \left( x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right) \] provided \( x, y \) are in the appropriate range. 2. **Calculate \( \sin^{-1} \left( \frac{4}{5} \right) + \sin^{-1} \left( \frac{5}{13} \right) \)**: Let \( x = \frac{4}{5} \) and \( y = \frac{5}{13} \). - Calculate \( \sqrt{1 - y^2} \): \[ y^2 = \left( \frac{5}{13} \right)^2 = \frac{25}{169} \quad \Rightarrow \quad 1 - y^2 = 1 - \frac{25}{169} = \frac{144}{169} \quad \Rightarrow \quad \sqrt{1 - y^2} = \frac{12}{13} \] - Calculate \( \sqrt{1 - x^2} \): \[ x^2 = \left( \frac{4}{5} \right)^2 = \frac{16}{25} \quad \Rightarrow \quad 1 - x^2 = 1 - \frac{16}{25} = \frac{9}{25} \quad \Rightarrow \quad \sqrt{1 - x^2} = \frac{3}{5} \] - Substitute into the formula: \[ \sin^{-1} \left( \frac{4}{5} \right) + \sin^{-1} \left( \frac{5}{13} \right) = \sin^{-1} \left( \frac{4}{5} \cdot \frac{12}{13} + \frac{5}{13} \cdot \frac{3}{5} \right) \] \[ = \sin^{-1} \left( \frac{48}{65} + \frac{15}{65} \right) = \sin^{-1} \left( \frac{63}{65} \right) \] 3. **Now add \( \sin^{-1} \left( \frac{63}{65} \right) + \sin^{-1} \left( \frac{16}{65} \right) \)**: Let \( z = \frac{16}{65} \). - Calculate \( \sqrt{1 - z^2} \): \[ z^2 = \left( \frac{16}{65} \right)^2 = \frac{256}{4225} \quad \Rightarrow \quad 1 - z^2 = 1 - \frac{256}{4225} = \frac{3969}{4225} \quad \Rightarrow \quad \sqrt{1 - z^2} = \frac{63}{65} \] - Substitute into the formula: \[ \sin^{-1} \left( \frac{63}{65} \right) + \sin^{-1} \left( \frac{16}{65} \right) = \sin^{-1} \left( \frac{63}{65} \cdot \frac{63}{65} + \frac{16}{65} \cdot \frac{3}{5} \right) \] \[ = \sin^{-1} \left( \frac{3969}{4225} + \frac{48}{65} \right) \] \[ = \sin^{-1} \left( \frac{3969 + 48 \cdot 65}{4225} \right) \] \[ = \sin^{-1} \left( \frac{3969 + 3120}{4225} \right) = \sin^{-1} \left( \frac{7089}{4225} \right) \] 4. **Final Result**: Since \( \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \), we can conclude: \[ \sin^{-1} \left( \frac{63}{65} \right) + \sin^{-1} \left( \frac{16}{65} \right) = \frac{\pi}{2} \] ### Final Answer: \[ \sin^{-1} \left( \frac{4}{5} \right) + \sin^{-1} \left( \frac{5}{13} \right) + \sin^{-1} \left( \frac{16}{65} \right) = \frac{\pi}{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

The valueof 2sin^(-1).(4)/(5)+2sin^(-1).(5)/(13)+2sin^(-1).(16)/(65) is equal to

Evaluate: cos(sin^(-1)3/5+sin^(-1)5/(13))

Evaluate: sin(3\ sin^(-1)0. 4)

Evaluate sin(1/2cos^(-1)(4/5))

Evaluate : int (1)/(4+5 sin x)dx

Prove that cot^(-1).(3)/(4) + sin^(-1).(5)/(13) = sin^(-1).(63)/(65)

Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2

Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2

Evaluate: sin^(-1)(sin((3pi)/5))

Evaluate: sin(cos^(-1)3/5+cos e c^(-1)(13)/5)