Home
Class 12
MATHS
int (cos^(2)x+sin 2x)/((2 cos x- sin x)^...

`int (cos^(2)x+sin 2x)/((2 cos x- sin x)^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\cos^2 x + \sin 2x}{(2 \cos x - \sin x)^2} \, dx, \] we can follow these steps: ### Step 1: Simplify the integrand using the identity for \(\sin 2x\) Recall that \(\sin 2x = 2 \sin x \cos x\). Thus, we can rewrite the integral as: \[ I = \int \frac{\cos^2 x + 2 \sin x \cos x}{(2 \cos x - \sin x)^2} \, dx. \] ### Step 2: Factor out \(\cos^2 x\) from the numerator We can factor \(\cos^2 x\) from the numerator: \[ I = \int \frac{\cos^2 x (1 + 2 \tan x)}{(2 \cos x - \sin x)^2} \, dx. \] ### Step 3: Rewrite the denominator We can rewrite the denominator in terms of \(\tan x\): \[ 2 \cos x - \sin x = 2 - \tan x. \] Thus, we have: \[ I = \int \frac{\cos^2 x (1 + 2 \tan x)}{(2 - \tan x)^2} \, dx. \] ### Step 4: Multiply and divide by \(\sec^2 x\) To facilitate substitution, we multiply and divide by \(\sec^2 x\): \[ I = \int \frac{\sec^2 x (1 + 2 \tan x)}{(2 - \tan x)^2} \, dx. \] ### Step 5: Use substitution \(t = \tan x\) Let \(t = \tan x\). Then, \(dx = \frac{dt}{\sec^2 x}\). Substituting this into the integral gives: \[ I = \int \frac{1 + 2t}{(2 - t)^2} \, dt. \] ### Step 6: Perform partial fraction decomposition We can express the integrand using partial fractions: \[ \frac{1 + 2t}{(2 - t)^2} = \frac{At + B}{2 - t} + \frac{C}{(2 - t)^2}. \] ### Step 7: Solve for coefficients By equating coefficients, we can find the values of \(A\), \(B\), and \(C\). ### Step 8: Integrate each term separately Once we have the partial fractions, we can integrate each term separately: 1. The integral of \(\frac{At + B}{2 - t}\) 2. The integral of \(\frac{C}{(2 - t)^2}\) ### Step 9: Substitute back to \(x\) After integrating, substitute back \(t = \tan x\) to express the result in terms of \(x\). ### Step 10: Simplify and combine results Finally, combine all the results and simplify to obtain the final answer. ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|22 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals int (cos^(2)x sin x)/(sin x - cos x)dx

I=int(dx)/(2+cos x-sin x)

int(1)/((2 sin x + cos x)^(2))dx

Solve the following integration int (cos x - sin x)/(cos x + sin x)*(2+2 sin 2x)dx

int(1)/(cos^(2) x-3 sin^(2) x)dx

(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx

int(dx)/(cos x(sin x+2))

int_(0)^(pi/2) (cos^(2)x dx)/(cos^(2)x+4 sin^(2)x)

int_(0)^(pi//2) x sin x cos x dx

int(2-3 cos x)/(sin^(2) x)dx