Home
Class 12
MATHS
Evaluate the following Integrals : in...

Evaluate the following Integrals :
`int (x^(2))/((x-1)(x-2)(x-3))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{x^2}{(x-1)(x-2)(x-3)} \, dx, \] we will use the method of partial fractions. ### Step 1: Set up the partial fraction decomposition We can express the integrand as: \[ \frac{x^2}{(x-1)(x-2)(x-3)} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}. \] ### Step 2: Multiply through by the denominator Multiplying both sides by \((x-1)(x-2)(x-3)\) gives: \[ x^2 = A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2). \] ### Step 3: Expand the right-hand side Expanding the right-hand side: 1. \(A(x-2)(x-3) = A(x^2 - 5x + 6)\) 2. \(B(x-1)(x-3) = B(x^2 - 4x + 3)\) 3. \(C(x-1)(x-2) = C(x^2 - 3x + 2)\) Combining these gives: \[ x^2 = (A + B + C)x^2 + (-5A - 4B - 3C)x + (6A + 3B + 2C). \] ### Step 4: Set up the system of equations Now, we can equate coefficients from both sides: 1. \(A + B + C = 1\) (coefficient of \(x^2\)) 2. \(-5A - 4B - 3C = 0\) (coefficient of \(x\)) 3. \(6A + 3B + 2C = 0\) (constant term) ### Step 5: Solve the system of equations From equation (1), we have: \[ C = 1 - A - B. \] Substituting \(C\) into equations (2) and (3): \[ -5A - 4B - 3(1 - A - B) = 0 \implies -5A - 4B - 3 + 3A + 3B = 0 \implies -2A - B = 3 \quad (4) \] \[ 6A + 3B + 2(1 - A - B) = 0 \implies 6A + 3B + 2 - 2A - 2B = 0 \implies 4A + B + 2 = 0 \quad (5) \] Now we can solve equations (4) and (5): From (4): \[ B = -2A - 3. \] Substituting \(B\) into (5): \[ 4A + (-2A - 3) + 2 = 0 \implies 2A - 1 = 0 \implies A = \frac{1}{2}. \] Substituting \(A\) back into (4): \[ B = -2\left(\frac{1}{2}\right) - 3 = -1 - 3 = -4. \] Now substituting \(A\) and \(B\) into (1): \[ C = 1 - \frac{1}{2} + 4 = \frac{1}{2} + 4 = \frac{9}{2}. \] ### Step 6: Write the partial fraction decomposition Thus, we have: \[ \frac{x^2}{(x-1)(x-2)(x-3)} = \frac{1/2}{x-1} - \frac{4}{x-2} + \frac{9/2}{x-3}. \] ### Step 7: Integrate each term Now we can integrate: \[ \int \left( \frac{1/2}{x-1} - \frac{4}{x-2} + \frac{9/2}{x-3} \right) dx = \frac{1}{2} \ln |x-1| - 4 \ln |x-2| + \frac{9}{2} \ln |x-3| + C. \] ### Final Answer Thus, the integral evaluates to: \[ \int \frac{x^2}{(x-1)(x-2)(x-3)} \, dx = \frac{1}{2} \ln |x-1| - 4 \ln |x-2| + \frac{9}{2} \ln |x-3| + C. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|20 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following Integrals. int x^(2) a^(x) dx

Evaluate the following integrals : int_0^2(x^2+x)dx

Evaluate the following Integrals : int(tan^(-1)x)/(x^(2))dx

Evaluate the following integrals int_1^3(2x+3)dx

Evaluate the following integrals : int_1^4(3x^2+2x)dx

Evaluate the following Integrals. int x (log x)^(2) dx

Evaluate the following integrals : int((x^3+8)(x-1))/(x^2-2x+4)dx

Evaluate the following integrals : int((1+x)^3)/(sqrt(x))dx

Evaluate the following Integrals : int ((x+2)dx)/((x^(2)+3x+3)sqrt(x+1))

Evaluate the following integral: int_1^2|x-3|dx