Home
Class 12
MATHS
The value of lim(x to 0) ((1)/(x) - cot...

The value of `lim_(x to 0) ((1)/(x) - cot x)` equals

A

1

B

`-1`

C

2

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left( \frac{1}{x} - \cot x \right) \), we can follow these steps: ### Step 1: Rewrite the expression We start by rewriting the expression using the definition of cotangent: \[ \cot x = \frac{\cos x}{\sin x} \] Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \left( \frac{1}{x} - \frac{\cos x}{\sin x} \right) \] ### Step 2: Combine the fractions Next, we find a common denominator to combine the fractions: \[ \frac{1}{x} - \frac{\cos x}{\sin x} = \frac{\sin x - x \cos x}{x \sin x} \] So now our limit becomes: \[ \lim_{x \to 0} \frac{\sin x - x \cos x}{x \sin x} \] ### Step 3: Analyze the numerator We need to analyze the numerator \( \sin x - x \cos x \). We can use Taylor series expansions for \( \sin x \) and \( \cos x \): \[ \sin x = x - \frac{x^3}{6} + O(x^5) \] \[ \cos x = 1 - \frac{x^2}{2} + O(x^4) \] Substituting these into the expression for the numerator: \[ \sin x - x \cos x = \left( x - \frac{x^3}{6} + O(x^5) \right) - x \left( 1 - \frac{x^2}{2} + O(x^4) \right) \] This simplifies to: \[ \sin x - x \cos x = x - \frac{x^3}{6} - x + \frac{x^3}{2} + O(x^5) = \left( \frac{1}{2} - \frac{1}{6} \right)x^3 + O(x^5) = \frac{1}{3}x^3 + O(x^5) \] ### Step 4: Substitute back into the limit Now substituting back into our limit: \[ \lim_{x \to 0} \frac{\frac{1}{3}x^3 + O(x^5)}{x \sin x} \] We also need to expand \( \sin x \) in the denominator: \[ \sin x = x - \frac{x^3}{6} + O(x^5) \] So: \[ x \sin x = x^2 - \frac{x^4}{6} + O(x^6) \] ### Step 5: Final limit calculation Thus, our limit now looks like: \[ \lim_{x \to 0} \frac{\frac{1}{3}x^3 + O(x^5)}{x^2 - \frac{x^4}{6} + O(x^6)} \] As \( x \to 0 \), the leading term in the numerator is \( \frac{1}{3}x^3 \) and in the denominator is \( x^2 \). Therefore, we can simplify: \[ \lim_{x \to 0} \frac{\frac{1}{3}x^3}{x^2} = \lim_{x \to 0} \frac{1}{3} x = 0 \] ### Conclusion Thus, the value of the limit is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|4 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x to 0) ((1)/(x^(2)) - cot x) equals

The value of : lim_(x to 0) (cos x)^(1/x) is

The value of lim_(x to 1) (x^(5) - 3x + 2)/(x - 1) equals

The value of lim_(x to 0) (tan x - sin s)/(x^(3)) equals

3) lim_(x rarr0)[(1)/(x)-cot x]

The value of lim_(x to 0) (log (5 + x) - log (5 - x))/(x) equals

The value of lim_(x to 0) (log(sin 5x + cos 5x))/(tan 3x) is equal to

The value of : lim_(x rarr0)(cosx-1)/(x) is

The value of lim_(xto 0)(e-(1+x)^(1//x))/(tanx) is

lim_(x to 0) (x)/(tan x) is equal to

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Section - B
  1. lim(x to 0) (log (1 + 2x))/(x) + lim(x to 0) (x^(4) - 2^(4))/(x - 2)...

    Text Solution

    |

  2. lim(x to oo) (sqrt(x + 1) - sqrt(x)) equals

    Text Solution

    |

  3. The value of lim(x to 0) ((1)/(x) - cot x) equals

    Text Solution

    |

  4. Evaluate underset(xtooo)lim[(x^(4)sin((1)/(x))+x^(2))/((1+|x|^(3)))].

    Text Solution

    |

  5. lim(x to 0) (x tan 2x -2x tan x)/((1- cos 2x)^(2)) equal

    Text Solution

    |

  6. The value of lim(x to 1) (x^(5) - 3x + 2)/(x - 1) equals

    Text Solution

    |

  7. The value of lim(x to 0) (tan x - sin s)/(x^(3)) equals

    Text Solution

    |

  8. lim(x to 0) (2^(x) - 1)/(sqrt(1 + x) - 1) =

    Text Solution

    |

  9. The value of lim(x to 0) (log (5 + x) - log (5 - x))/(x) equals

    Text Solution

    |

  10. If m,n in I^(+), then lim(x to 0) ("sin"x^(n))/(("sin"x)^(m)) equals

    Text Solution

    |

  11. The value of lim(x to (pi)/(4)) ("sin" x - cos x)/((x - (pi)/(4))) eq...

    Text Solution

    |

  12. The value of lim(x to 0) ("sin" (pi cos^(2) x))/(x^(2)) equals

    Text Solution

    |

  13. The value of lim(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

    Text Solution

    |

  14. Evaluate the following limits : Lim(theta to pi/2 ) (sec theta - ta...

    Text Solution

    |

  15. The value of lim(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) ...

    Text Solution

    |

  16. The value of lim(x to 0) ((1)/(x^(2)) - cot x) equals

    Text Solution

    |

  17. Evaluate the limit: ("lim")(hvec0)[1/(h(8+h)^(1/3))-1/(2h)]

    Text Solution

    |

  18. underset(xtooo)lim[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  19. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  20. underset(x to 2)(Lt) {[x - 2] + [2 - x] - x} = where [.] represents gr...

    Text Solution

    |