Home
Class 12
MATHS
The equation sinx+sin2x+2sinxsin2x=2cosx...

The equation `sinx+sin2x+2sinxsin2x=2cosx+cos2x` is satisfied by values of `x` for which

A

`x = npi +(-1)^(n) pi/6, n int I`

B

`x=2npi + (2pi)/3, n int I`

C

`x = 2npi- (2pi)/3, n int I`

D

`x = 2npi -pi/2, n int I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin x + \sin 2x + 2 \sin x \sin 2x = 2 \cos x + \cos 2x \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \sin x + \sin 2x + 2 \sin x \sin 2x = 2 \cos x + \cos 2x \] We can express \( \sin 2x \) and \( \cos 2x \) in terms of \( \sin x \) and \( \cos x \): \[ \sin 2x = 2 \sin x \cos x \quad \text{and} \quad \cos 2x = 1 - 2 \sin^2 x \] Substituting these into the equation gives: \[ \sin x + 2(2 \sin x \cos x) + 2 \sin x (2 \sin x \cos x) = 2 \cos x + (1 - 2 \sin^2 x) \] ### Step 2: Simplify the equation Now simplify the left-hand side: \[ \sin x + 2 \sin x \cos x + 4 \sin^2 x \cos x = 2 \cos x + 1 - 2 \sin^2 x \] Rearranging gives: \[ \sin x + 2 \sin x \cos x + 4 \sin^2 x \cos x + 2 \sin^2 x - 2 \cos x - 1 = 0 \] ### Step 3: Factor out common terms Factor out \( \sin x \): \[ \sin x (1 + 2 \cos x + 4 \sin x \cos x) + (2 \sin^2 x - 2 \cos x - 1) = 0 \] ### Step 4: Set factors to zero This gives us two equations to solve: 1. \( \sin x = 0 \) 2. \( 1 + 2 \cos x + 4 \sin x \cos x + 2 \sin^2 x - 2 \cos x - 1 = 0 \) ### Step 5: Solve \( \sin x = 0 \) The solutions for \( \sin x = 0 \) are: \[ x = n\pi, \quad n \in \mathbb{Z} \] ### Step 6: Solve the second equation Now we simplify the second equation: \[ 2 \sin^2 x + 2 \cos x + 4 \sin x \cos x - 2 \cos x = 0 \] This simplifies to: \[ 2 \sin^2 x + 4 \sin x \cos x = 0 \] Factoring gives: \[ 2 \sin x (\sin x + 2 \cos x) = 0 \] Setting each factor to zero gives: 1. \( \sin x = 0 \) (already solved) 2. \( \sin x + 2 \cos x = 0 \) or \( \sin x = -2 \cos x \) ### Step 7: Solve \( \sin x = -2 \cos x \) Dividing both sides by \( \cos x \) (where \( \cos x \neq 0 \)): \[ \tan x = -2 \] The general solution for this is: \[ x = \tan^{-1}(-2) + n\pi, \quad n \in \mathbb{Z} \] ### Step 8: Combine solutions Combining all solutions, we have: 1. \( x = n\pi, \quad n \in \mathbb{Z} \) 2. \( x = \tan^{-1}(-2) + n\pi, \quad n \in \mathbb{Z} \) ### Conclusion The equation \( \sin x + \sin 2x + 2 \sin x \sin 2x = 2 \cos x + \cos 2x \) is satisfied by values of \( x \) for which: \[ x = n\pi \quad \text{or} \quad x = \tan^{-1}(-2) + n\pi, \quad n \in \mathbb{Z} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section E (Assertion-Reason Types Questions)|18 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-B (Objective Type Questions One option is correct)|131 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

The general solution of sinx−3sin2x+sin3x=cosx−3cos2x+cos3x is

Solve the equation (sqrt(3))/2sinx-cosx=cos^2x

Solve the equation (sqrt(3))/2sinx-cosx=cos^2x

Solve the equation 5sin^(2)x-7sinx cosx+16cos^(2)x=4

The equation 3^("sin"2x + 2"cos"^(2)x) + 3^(1-"sin"2x +2"sin"^(2)x) = 28 is satisfied for the values of x given by

int(sin2x)/((sinx+cosx)^2)dx

Solve the equation 5 sin^(2)x-7 sinx cos x + 16 cos^(2)x=4

The solutions of the equation sinx+2sin2x+sin3x=cosx+2cos2x+cos3x in the interval 0lt=xlt=2pi, are

prove that sin2x+2sin4x+sin6x=4cos^(2)x.sinx

Solve for x: sin2x+sinx +cos2x+cosx +1 =0