Home
Class 12
MATHS
If cosA + cosB =4sin^(2)(C/2), then...

If cosA + cosB `=4sin^(2)(C/2)`, then

A

`2sinB = sinA + sinC`

B

`cos C = 1-r/R`

C

`cosA + cosB = (2r)/R`

D

a,c,b are in A.P.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos A + \cos B = 4 \sin^2\left(\frac{C}{2}\right) \), we will use trigonometric identities and properties of triangles. ### Step-by-step Solution: 1. **Start with the given equation:** \[ \cos A + \cos B = 4 \sin^2\left(\frac{C}{2}\right) \] 2. **Use the sum-to-product identities:** The identity for the sum of cosines is: \[ \cos A + \cos B = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) \] So we can rewrite the left-hand side: \[ 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) = 4 \sin^2\left(\frac{C}{2}\right) \] 3. **Substitute \( A + B \) using the triangle property:** In a triangle, \( A + B + C = \pi \) (or \( 180^\circ \)), hence: \[ A + B = \pi - C \] Therefore, \[ \frac{A + B}{2} = \frac{\pi - C}{2} = \frac{\pi}{2} - \frac{C}{2} \] 4. **Substitute this back into the equation:** Now we have: \[ 2 \cos\left(\frac{\pi}{2} - \frac{C}{2}\right) \cos\left(\frac{A - B}{2}\right) = 4 \sin^2\left(\frac{C}{2}\right) \] Using the identity \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \): \[ 2 \sin\left(\frac{C}{2}\right) \cos\left(\frac{A - B}{2}\right) = 4 \sin^2\left(\frac{C}{2}\right) \] 5. **Simplify the equation:** Divide both sides by \( 2 \sin\left(\frac{C}{2}\right) \) (assuming \( \sin\left(\frac{C}{2}\right) \neq 0 \)): \[ \cos\left(\frac{A - B}{2}\right) = 2 \sin\left(\frac{C}{2}\right) \] 6. **Use the double angle identity:** Recall that \( \sin C = 2 \sin\left(\frac{C}{2}\right) \cos\left(\frac{C}{2}\right) \). Therefore, we can express \( 2 \sin\left(\frac{C}{2}\right) \) in terms of \( C \): \[ \cos\left(\frac{A - B}{2}\right) = \sin C \] 7. **Final relationships:** We can express this in terms of the sides of the triangle: \[ \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = k \] where \( a, b, c \) are the sides opposite angles \( A, B, C \) respectively. ### Conclusion: From the above steps, we can conclude that the relationship holds true under the conditions of a triangle, leading us to the conclusion that \( a, b, c \) are in proportion.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section E (Assertion-Reason Types Questions)|18 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-B (Objective Type Questions One option is correct)|131 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If cosA=4/5 and cosB=12/13 , then find the values of cos(A+B) and sin(A-B) , where A , B ((3pi)/(2) to 2pi ) .

Let a and b be real numbers such that sina + sinb =1/sqrt(2) , cosa + cosb =sqrt(3)/2 , then

In Delta ABC,if cos A+sin A-2/(cosB+sin B)=0, then the value of ((a+b)/c)^4 is

If A+B+C=pi , prove that : cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1

If cosA+cosB=m and sinA+sinB=n then sin(A+B)=

If cosA+cos^(2)A=1 , then prove that sin^(2)A+sin^(4)A=1 .

If sinA=sin B and cosA=cosB , then find the value of A in terms of Bdot

If in a triangle A B C ,(1+cosA)/a+(1+cosB)/b+(1+cosC)/c =(k^2(1+cosA)(1+cosB)(1+cosC)/(a b c) , then k is equal to (a) 1/(2sqrt(2)R) (b) 2R (c) 1/R (d) none of these

If cosA=3/4, then 32 sin (A/2) sin ((5A) /2)= ------------- (A) √11 (B) -√11 (C) 11 (D) -11

In triangle A B C , if cosA+cosB+cosC=7/4, t h e n R/r is equal to 3/4 (b) 4/3 (c) 2/3 (d) 3/2