Home
Class 12
MATHS
Statement -1: sin 1 lt sin 2 lt sin3 S...

Statement -1: `sin 1 lt sin 2 lt sin3`
Statement-2: `sin3 lt sin2 lt sin1`
Statement-3: `sinx_(1) lt sinx_(2), x_(1) , x_(2) in (0,pi/2)`

A

TFT

B

FTT

C

FTF

D

TFF

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze each statement step by step. ### Step 1: Analyze Statement 1 **Statement 1:** \( \sin(1) < \sin(2) < \sin(3) \) - The sine function is increasing in the interval \( (0, \frac{\pi}{2}) \). - Since \( 1, 2, \) and \( 3 \) are all in radians and fall within this interval, we can conclude that: \[ \sin(1) < \sin(2) < \sin(3) \] - Therefore, **Statement 1 is true**. ### Step 2: Analyze Statement 2 **Statement 2:** \( \sin(3) < \sin(2) < \sin(1) \) - From our analysis of Statement 1, we know that \( \sin(1) < \sin(2) < \sin(3) \). - This means that \( \sin(3) \) is actually greater than both \( \sin(2) \) and \( \sin(1) \). - Therefore, **Statement 2 is false**. ### Step 3: Analyze Statement 3 **Statement 3:** \( \sin(x_1) < \sin(x_2) \) for \( x_1, x_2 \in (0, \frac{\pi}{2}) \) - The sine function is strictly increasing in the interval \( (0, \frac{\pi}{2}) \). - If \( x_1 < x_2 \), then it follows that \( \sin(x_1) < \sin(x_2) \). - However, the statement does not specify that \( x_1 < x_2 \). If \( x_1 \) is greater than \( x_2 \), then \( \sin(x_1) \) could be greater than \( \sin(x_2) \). - Thus, **Statement 3 is false** because it is not universally true for all \( x_1, x_2 \) in the interval. ### Conclusion - Statement 1 is true. - Statement 2 is false. - Statement 3 is false. The overall pattern is true, false, false. ### Final Answer The correct option is option number 4. ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section I (subjective Type questions)|35 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section -G (Integer Answer type questions)|18 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

Statement -1 : sin 3 le sin 1 le sin2 Statement-2 : sinx is positive in the first and second quadrants .

Solve sin^(-1) [sin((2x^(2) + 4)/(1 + x^(2)))] lt pi -3

Statement-1: cos theta= x+1/x is possible for some real value of x . Statement:2: sin1^(@) lt sin 1 . Statement-3: The minimum value of 5cos x-12 sinx +13 is 0

Statement-1 f(x)=(sin x)/(x) lt 1 for 0 lt x lt pi/2 Statement -2 f(x)=(sin x)/(x) is decreasing function on (0,pi//2)

STATEMENT-1: sin 2 > sin 3 STATEMENT-2: If x,y in (pi/2, pi), x lt y, then sin x gt siny

Solve: sin 7 theta + sin 4 theta + sin theta = 0, 0 lt theta lt ( pi)/(2)

Solve: sin 5x - sin 3x - sin x =0, 0^(@) lt x lt 360^(@).

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

For x in (0,(pi)/(2)) prove that "sin"^(2) x lt x^(2) lt " tan"^(2) x

Statement -1:If e^{("sin"^(2)x + "sin"^(4)x + "sin"^(6)x +…)"log"_(e)2] satisfie the equation x^(2)-9x +8=0 , "then " (cosx)/(cosx + sinx) = (sqrt(3)-1)/(2), 0 lt x lt (pi)/(2) . Statement-2: The sum sin^(2) x + sin^(4)x + sin^(6) x + .... oo is equal to tan^(2)x