Home
Class 12
MATHS
If 5 costheta = 3, then ( "cosec "theta+...

If `5 costheta = 3`, then `( "cosec "theta+cot theta)/(" cosec " theta- cot theta)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation and the expression we need to evaluate. **Step 1: Find cos(θ)** Given that \( 5 \cos \theta = 3 \), we can isolate \( \cos \theta \): \[ \cos \theta = \frac{3}{5} \] **Step 2: Rewrite the expression** We need to evaluate the expression: \[ \frac{\csc \theta + \cot \theta}{\csc \theta - \cot \theta} \] Recall that: \[ \csc \theta = \frac{1}{\sin \theta} \quad \text{and} \quad \cot \theta = \frac{\cos \theta}{\sin \theta} \] Thus, we can rewrite the expression as: \[ \frac{\frac{1}{\sin \theta} + \frac{\cos \theta}{\sin \theta}}{\frac{1}{\sin \theta} - \frac{\cos \theta}{\sin \theta}} \] **Step 3: Simplify the expression** Factoring out \( \frac{1}{\sin \theta} \) from both the numerator and the denominator gives: \[ \frac{\frac{1 + \cos \theta}{\sin \theta}}{\frac{1 - \cos \theta}{\sin \theta}} = \frac{1 + \cos \theta}{1 - \cos \theta} \] **Step 4: Substitute the value of cos(θ)** Now, substitute \( \cos \theta = \frac{3}{5} \): \[ \frac{1 + \frac{3}{5}}{1 - \frac{3}{5}} = \frac{\frac{5}{5} + \frac{3}{5}}{\frac{5}{5} - \frac{3}{5}} = \frac{\frac{8}{5}}{\frac{2}{5}} \] **Step 5: Simplify the fraction** Now simplify the fraction: \[ \frac{\frac{8}{5}}{\frac{2}{5}} = \frac{8}{5} \times \frac{5}{2} = \frac{8 \cdot 5}{5 \cdot 2} = \frac{8}{2} = 4 \] Thus, the final answer is: \[ \boxed{4} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section -H (Multiple True-false, type Questions)|9 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section I (subjective Type questions)|35 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section F (Matrix-Match Type Questions)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If 5 cos theta = 3 , evaluate : ("cosec" theta-cottheta)/("cosec" theta + cottheta)

(b) cosec theta=1+cot theta

(b) cosec theta=1+cot theta

Solve cot theta + tan theta=2 cosec theta .

prove that (cosec theta + cot theta)/(cosec theta- cot theta) = (cosec theta +cot theta)^2

Prove that cot 2 theta + tan theta = cosec 2 theta

Solve cot theta + "cosec" theta =sqrt(3)

If pi lt theta lt 2pi then sqrt ((1+cos theta)/(1-cos theta))= a. cosec theta+cot theta , b. cosec theta - cot theta , c. cot theta-cosec theta , d. -cosectheta - cot theta

Solve: cot\ theta/2-cottheta=cosec\ theta/2

If 5 cot theta =12 , find the value of : "cosec" theta + sec theta