Home
Class 12
MATHS
If tan theta=a/b and 0 to theta lt pi, t...

If `tan theta=a/b` and `0 to theta lt pi`, then the value of `(sqrt(a^(2)+b^(2))/(|a|) sin theta)` is ………..(Assume, `b ne 0, a ne 0, a,b in R`)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \frac{\sqrt{a^2 + b^2}}{|a| \sin \theta} \] given that \(\tan \theta = \frac{a}{b}\) and \(0 < \theta < \pi\). ### Step-by-step Solution: 1. **Start with the given relationship**: \[ \tan \theta = \frac{a}{b} \] This implies that: \[ \frac{b}{a} = \frac{1}{\tan \theta} = \cot \theta \] 2. **Rewrite the expression**: We need to evaluate: \[ \frac{\sqrt{a^2 + b^2}}{|a| \sin \theta} \] 3. **Express \(b\) in terms of \(a\) and \(\tan \theta\)**: From \(\tan \theta = \frac{a}{b}\), we can express \(b\) as: \[ b = \frac{a}{\tan \theta} \] 4. **Substitute \(b\) into the expression**: Substitute \(b\) into the expression \(a^2 + b^2\): \[ a^2 + b^2 = a^2 + \left(\frac{a}{\tan \theta}\right)^2 = a^2 + \frac{a^2}{\tan^2 \theta} = a^2 \left(1 + \frac{1}{\tan^2 \theta}\right) \] 5. **Use the identity for \(\tan\)**: Recall that: \[ 1 + \frac{1}{\tan^2 \theta} = \frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta} = \frac{1}{\sin^2 \theta} \] Thus: \[ a^2 + b^2 = a^2 \cdot \frac{1}{\sin^2 \theta} = \frac{a^2}{\sin^2 \theta} \] 6. **Take the square root**: Now, we take the square root: \[ \sqrt{a^2 + b^2} = \sqrt{\frac{a^2}{\sin^2 \theta}} = \frac{|a|}{|\sin \theta|} \] 7. **Substitute back into the expression**: Now substituting back into the original expression: \[ \frac{\sqrt{a^2 + b^2}}{|a| \sin \theta} = \frac{\frac{|a|}{|\sin \theta|}}{|a| \sin \theta} = \frac{1}{|\sin \theta| \sin \theta} \] 8. **Simplify the expression**: Since \(|\sin \theta| = \sin \theta\) for \(0 < \theta < \pi\): \[ \frac{1}{\sin^2 \theta} \] 9. **Final Result**: Therefore, the value of the expression is: \[ 1 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section -H (Multiple True-false, type Questions)|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If tan theta=a/b then b cos 2theta+asin 2theta=

If sin theta =sqrt(3) cos theta, -pi lt theta lt 0 , then the value of theta is

Knowledge Check

  • If 6sin^(2)theta - sin theta = 1 and 0 le theta le pi , what is the value of sin theta ?

    A
    `(1)/(6)`
    B
    `(1)/(3)`
    C
    `(1)/(2)`
    D
    19
  • If x gt 0, a = x cos theta , and b = x sin theta , then sqrt(a^(2)+b^(2))=

    A
    1
    B
    x
    C
    2x
    D
    `x(cos theta + sin theta)`
  • Similar Questions

    Explore conceptually related problems

    If tan theta = b/a, then find the value of a cos 2theta + b sin 2theta .

    If (sin 3theta)/(cos 2theta)lt 0 , then theta lies in

    Solve tan theta tan 4theta=1 for 0 lt theta lt pi .

    If tan a theta-tan b theta=0 , then prove that the values of theta forms an A.P.

    If tan theta = a/b , where 0lttheta lt pi/4 and bgtagt0 , find the value of sin 2theta, cos 2theta and tan 2theta.

    If sin theta+ cos theta = sqrt(2) cos theta, (theta ne 90^(@)) then value of tan theta is