Home
Class 12
MATHS
Find the derivative of cos( sin x^(2)) ...

Find the derivative of `cos( sin x^(2)) at x = sqrt(pi/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( f(x) = \cos(\sin(x^2)) \) at \( x = \sqrt{\frac{\pi}{2}} \), we will follow these steps: ### Step 1: Differentiate the function We start with the function: \[ f(x) = \cos(\sin(x^2)) \] To find the derivative \( f'(x) \), we will use the chain rule. The derivative of \( \cos(u) \) is \( -\sin(u) \cdot \frac{du}{dx} \), where \( u = \sin(x^2) \). First, we differentiate \( \cos(u) \): \[ f'(x) = -\sin(\sin(x^2)) \cdot \frac{d}{dx}(\sin(x^2)) \] ### Step 2: Differentiate \( \sin(x^2) \) Next, we need to differentiate \( \sin(x^2) \) using the chain rule again: \[ \frac{d}{dx}(\sin(x^2)) = \cos(x^2) \cdot \frac{d}{dx}(x^2) = \cos(x^2) \cdot 2x \] ### Step 3: Combine the derivatives Now we can substitute back into our expression for \( f'(x) \): \[ f'(x) = -\sin(\sin(x^2)) \cdot (2x \cos(x^2)) \] Thus, we have: \[ f'(x) = -2x \cos(x^2) \sin(\sin(x^2)) \] ### Step 4: Evaluate the derivative at \( x = \sqrt{\frac{\pi}{2}} \) Now we need to evaluate \( f'(\sqrt{\frac{\pi}{2}}) \): \[ f'(\sqrt{\frac{\pi}{2}}) = -2\left(\sqrt{\frac{\pi}{2}}\right) \cos\left(\left(\sqrt{\frac{\pi}{2}}\right)^2\right) \sin\left(\sin\left(\left(\sqrt{\frac{\pi}{2}}\right)^2\right)\right) \] Calculating \( \left(\sqrt{\frac{\pi}{2}}\right)^2 \): \[ \left(\sqrt{\frac{\pi}{2}}\right)^2 = \frac{\pi}{2} \] So we have: \[ f'(\sqrt{\frac{\pi}{2}}) = -2\left(\sqrt{\frac{\pi}{2}}\right) \cos\left(\frac{\pi}{2}\right) \sin\left(\sin\left(\frac{\pi}{2}\right)\right) \] ### Step 5: Evaluate \( \cos\left(\frac{\pi}{2}\right) \) and \( \sin\left(\frac{\pi}{2}\right) \) We know: \[ \cos\left(\frac{\pi}{2}\right) = 0 \quad \text{and} \quad \sin\left(\frac{\pi}{2}\right) = 1 \] Thus, substituting these values: \[ f'(\sqrt{\frac{\pi}{2}}) = -2\left(\sqrt{\frac{\pi}{2}}\right) \cdot 0 \cdot \sin(1) \] This simplifies to: \[ f'(\sqrt{\frac{\pi}{2}}) = 0 \] ### Final Answer The derivative of \( \cos(\sin(x^2)) \) at \( x = \sqrt{\frac{\pi}{2}} \) is: \[ \boxed{0} \]

To find the derivative of the function \( f(x) = \cos(\sin(x^2)) \) at \( x = \sqrt{\frac{\pi}{2}} \), we will follow these steps: ### Step 1: Differentiate the function We start with the function: \[ f(x) = \cos(\sin(x^2)) \] To find the derivative \( f'(x) \), we will use the chain rule. The derivative of \( \cos(u) \) is \( -\sin(u) \cdot \frac{du}{dx} \), where \( u = \sin(x^2) \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Assignment ( section -A)|61 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section -B|35 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

Find the Derivative f(x)=cos(sin x)

Find the derivative of cos(sqrt(2x)) w.r.to. x

Knowledge Check

  • Find the derivative of sin (sin x^(2)) .

    A
    1
    B
    2
    C
    0
    D
    None of these
  • Derivative of sin(sin x^(2)) at x = sqrt((pi)/(2)) is

    A
    0
    B
    1
    C
    `-1`
    D
    2
  • The derivative of cos^(-1)((sinx+cosx)/(sqrt(2))),-(pi)/(4)ltxlt(pi)/(4) , w.r.t.x is

    A
    `(1)/(sqrt(2))`
    B
    1
    C
    `-1`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    Find the derivative of sin^2 x with respect to 'x'

    Find the derivatives w.r.t. x : (sin^(p)x)/(cos^(p+2)x)

    Find the derivative of the function at the indicated point: sin x \ at \ x=pi/2

    Find the value of "cos"(2cos^(-1)x+sin^(-1)x) at x=1/5, where 0lt=pi and -pi/2lt=sin^(-1)xlt=pi/2dot

    Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)