Home
Class 9
MATHS
Factorise : b^(2) + c^(2) + 2bc - a...

Factorise :
` b^(2) + c^(2) + 2bc - a^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( b^2 + c^2 + 2bc - a^2 \), we can follow these steps: ### Step 1: Recognize a Perfect Square We start with the expression: \[ b^2 + c^2 + 2bc - a^2 \] Notice that \( b^2 + c^2 + 2bc \) can be rewritten using the perfect square formula: \[ b^2 + c^2 + 2bc = (b + c)^2 \] Thus, we can rewrite the original expression as: \[ (b + c)^2 - a^2 \] ### Step 2: Apply the Difference of Squares Formula Now we have a difference of squares, which can be factored using the formula \( x^2 - y^2 = (x - y)(x + y) \). Here, let \( x = (b + c) \) and \( y = a \). Therefore, we can write: \[ (b + c)^2 - a^2 = ((b + c) - a)((b + c) + a) \] ### Step 3: Simplify the Factors Now we simplify the factors: 1. The first factor is: \[ (b + c) - a = b + c - a \] 2. The second factor is: \[ (b + c) + a = b + c + a \] ### Final Factorized Form Putting it all together, we have: \[ b^2 + c^2 + 2bc - a^2 = (b + c - a)(b + c + a) \] ### Summary of the Factorization Thus, the factorization of the expression \( b^2 + c^2 + 2bc - a^2 \) is: \[ (b + c - a)(b + c + a) \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(2) - b^(2) - c^(2) +2bc

Factorise : 8a b^(2) + 12 a^(2)b

Factorise : a^(2) - b^(2) - 2b -1

Factorise : ( a^(2) + 1) b^(2) - b^(4) - a^(2)

Factorise : (a + 2b)^2 - a^2

Factorise: 25a^(2) - 9b^(2) + 12bc - 4c^(2)

Factorise : a^(2) + b^(2) - c^(2) - d^(2) + 2ab - 2cd

Factorise : a-b-4a^(2) + 4b^(2)

Factorise : (i) a^(2) - (b-c)^(2)

Factorise : a^(2) - (2a + 3b)^(2)