Home
Class 9
MATHS
If 25 ^(x+1) = (125)/( 5^(x)) , find...

If ` 25 ^(x+1) = (125)/( 5^(x)) , ` find the value of x.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 25^{(x+1)} = \frac{125}{5^x} \), we can follow these steps: ### Step 1: Rewrite the bases First, we can express 25 and 125 in terms of base 5: - \( 25 = 5^2 \) - \( 125 = 5^3 \) So, we can rewrite the equation as: \[ (5^2)^{(x+1)} = \frac{5^3}{5^x} \] ### Step 2: Simplify the left side Using the power of a power property, we can simplify the left side: \[ 5^{2(x+1)} = \frac{5^3}{5^x} \] ### Step 3: Simplify the right side On the right side, we can simplify the fraction: \[ \frac{5^3}{5^x} = 5^{3-x} \] Now, our equation looks like: \[ 5^{2(x+1)} = 5^{3-x} \] ### Step 4: Set the exponents equal Since the bases are the same, we can set the exponents equal to each other: \[ 2(x + 1) = 3 - x \] ### Step 5: Expand and simplify Expanding the left side: \[ 2x + 2 = 3 - x \] ### Step 6: Solve for x Now, we can solve for \( x \): 1. Add \( x \) to both sides: \[ 2x + x + 2 = 3 \] This simplifies to: \[ 3x + 2 = 3 \] 2. Subtract 2 from both sides: \[ 3x = 1 \] 3. Divide by 3: \[ x = \frac{1}{3} \] ### Final Answer The value of \( x \) is \( \frac{1}{3} \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise logrithms|20 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Triangles|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

If 5^(x +1) = 25^(x-2) , find the value of 3^(x-3) xx 2^(3-x) .

If x- (1)/ (x ) = 4 , find the value of : x+ (1)/(x)

If (-5)/7=x/(28), find the value of x.

If 25^(x-1)=5^(2x-1)-100 , then find the value of x .

If the angle of inclination of line joining the points (x,3) and (-2,5) is 45^(@) , find the value of x .

If x=5, find the value of : 3x^(2)-8x-10

If x-1/x=5 , find the value of x^3-1/(x^3)

If lim_(x to a) (x^(5) + a^(5))/(x + a) = 405 , Find the value of a.

If |A| = 2 and A = | (2x, 6) , (5x, 1)| then find the value of x

If x+1/x=5 find the value of x^3+1/(x^3)