Home
Class 12
MATHS
The value of int(x-1)e^(-x) dx is equal ...

The value of `int(x-1)e^(-x)` dx is equal to

A

`-xe^(x)+C`

B

`xe^(x)+C`

C

`-xe^(-x)+C`

D

`xe^(-x)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int (x - 1)e^{-x} \, dx \), we can break it down into simpler parts. Here’s a step-by-step solution: ### Step 1: Split the Integral We can express the integral as: \[ I = \int (x - 1)e^{-x} \, dx = \int x e^{-x} \, dx - \int e^{-x} \, dx \] ### Step 2: Solve \( \int x e^{-x} \, dx \) using Integration by Parts For the integral \( \int x e^{-x} \, dx \), we will use integration by parts. Let: - \( u = x \) (thus \( du = dx \)) - \( dv = e^{-x} dx \) (thus \( v = -e^{-x} \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int x e^{-x} \, dx = -x e^{-x} - \int (-e^{-x}) \, dx \] This simplifies to: \[ \int x e^{-x} \, dx = -x e^{-x} + \int e^{-x} \, dx \] ### Step 3: Solve \( \int e^{-x} \, dx \) The integral \( \int e^{-x} \, dx \) is: \[ \int e^{-x} \, dx = -e^{-x} \] ### Step 4: Substitute Back Now substituting back into our equation from Step 2: \[ \int x e^{-x} \, dx = -x e^{-x} - e^{-x} \] ### Step 5: Combine the Results Now we can combine the results: \[ I = \int x e^{-x} \, dx - \int e^{-x} \, dx = (-x e^{-x} - e^{-x}) - (-e^{-x}) \] The \( -e^{-x} \) terms cancel out: \[ I = -x e^{-x} \] ### Step 6: Add the Constant of Integration Finally, we add the constant of integration \( C \): \[ I = -x e^{-x} + C \] Thus, the value of the integral \( \int (x - 1)e^{-x} \, dx \) is: \[ \boxed{-x e^{-x} + C} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section D: Algebraic Integral:|5 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section E): Integration by trignometric functions:|6 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SECTION B; INTEGRATION USING SUBSTITUTION|8 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

int(x+1)^(2)e^(x)dx is equal to

The value of int_(-1)^(1)(x|x|)dx is equal to

int(1)/(e^(-x)) dx

If f(x)=min{|x-1|,|x|,|x+1|, then the value of int_-1^1 f(x)dx is equal to

The value of int(dx)/(x^(2)+x+1) is equal to

int x^3 e^(x^2) dx is equal to

The value of int_(-2)^(2) |[x]| dx is equal to

The value of int_(4)^(5) e^(x) dx

inte^(xloga).e^(x)dx is equal to

The value of int(x e^ln(sinx)-cosx)dx is equal to