Home
Class 12
MATHS
The value of int(dx)/(x^(2)+x+1) is equa...

The value of `int(dx)/(x^(2)+x+1)` is equal to

A

`sqrt(3)/(2)tan^(-1)(2x+1)/(sqrt(3))C`

B

`2/sqrt(3)tan^(-1)(2x+1)/(sqrt(3))+C`

C

`1/sqrt(3)tan^(-1)(2x+1)/(sqrt(3))+C`

D

`2/sqrt(3)tan^(-1)(2x-1)/(sqrt(3))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{dx}{x^2 + x + 1}\), we will use the method of completing the square and then apply the formula for the integral of a function of the form \(\frac{1}{x^2 + a^2}\). ### Step 1: Complete the square for the denominator We start with the quadratic expression in the denominator: \[ x^2 + x + 1 \] To complete the square, we take the coefficient of \(x\), which is \(1\), halve it to get \(\frac{1}{2}\), and then square it to get \(\left(\frac{1}{2}\right)^2 = \frac{1}{4}\). We can rewrite the expression as: \[ x^2 + x + \frac{1}{4} + \frac{3}{4} = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4} \] Thus, we have: \[ x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4} \] ### Step 2: Rewrite the integral Now we can rewrite the integral: \[ \int \frac{dx}{x^2 + x + 1} = \int \frac{dx}{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}} \] ### Step 3: Use the formula for integration The integral \(\int \frac{dx}{x^2 + a^2}\) is given by \(\frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C\). In our case, we have: - \(a^2 = \frac{3}{4}\) which gives \(a = \frac{\sqrt{3}}{2}\). Thus, we can apply the formula: \[ \int \frac{dx}{\left(x + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \frac{1}{\frac{\sqrt{3}}{2}} \tan^{-1}\left(\frac{x + \frac{1}{2}}{\frac{\sqrt{3}}{2}}\right) + C \] ### Step 4: Simplify the expression This simplifies to: \[ \frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{2\left(x + \frac{1}{2}\right)}{\sqrt{3}}\right) + C \] Now substituting \(x + \frac{1}{2} = x + 0.5\) gives: \[ \frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{2x + 1}{\sqrt{3}}\right) + C \] ### Final Answer Thus, the value of the integral is: \[ \int \frac{dx}{x^2 + x + 1} = \frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{2x + 1}{\sqrt{3}}\right) + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section E): Integration by trignometric functions:|6 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Reduction Formulae|2 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section C: Integration by parts:|6 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

int(1)/(x^(2)+4x+13)dx is equal to

The value of int_(-2)^(2) |[x]| dx is equal to

int(dx)/(x(x^n+1)) is equal to

The value of int(cos2x)/(cosx) dx is equal to

int(dx)/((x^3-1)^(2/3)x^2) is equal to

The value of int(dx)/(xsqrt(1-x^(3))) is equal to

The value of int(1-x^7)/(x(1+x^7))dx is equal to

The value of int_(-1)^(1)(x|x|)dx is equal to

The value of int(x-1)e^(-x) dx is equal to

int (dx)/(x(x^(2)+1))" equals "