Home
Class 12
MATHS
The value of inta^sqrt(x)/sqrt(x) dx is ...

The value of `inta^sqrt(x)/sqrt(x)` dx is equal to

A

`a^sqrt(x)/sqrt(x)+C`

B

`(2a^sqrt(x))/(lna)+C`

C

`2a^sqrt(x).ln a+C`

D

`2a^sqrt(x)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{a^{\sqrt{x}}}{\sqrt{x}} \, dx \), we will use substitution and integration techniques step by step. ### Step 1: Set Up the Integral Let: \[ I = \int \frac{a^{\sqrt{x}}}{\sqrt{x}} \, dx \] ### Step 2: Substitution We will use the substitution: \[ t = a^{\sqrt{x}} \] Taking the natural logarithm of both sides gives: \[ \ln t = \sqrt{x} \ln a \] Squaring both sides, we have: \[ \ln^2 t = x (\ln a)^2 \] From this, we can express \( x \) in terms of \( t \): \[ x = \frac{\ln^2 t}{(\ln a)^2} \] ### Step 3: Differentiate to Find \( dx \) Now, we differentiate \( x \): \[ dx = \frac{2 \ln t}{\ln a} \cdot \frac{1}{t} \, dt \] This gives us: \[ dx = \frac{2 \ln t}{\ln a} \cdot \frac{1}{t} \, dt \] ### Step 4: Substitute \( dx \) and Simplify the Integral Now substitute \( dx \) back into the integral: \[ I = \int \frac{t}{\sqrt{x}} \cdot \frac{2 \ln t}{\ln a} \cdot \frac{1}{t} \, dt \] The \( t \) cancels out: \[ I = \int \frac{2 \ln t}{\ln a} \cdot \frac{1}{\sqrt{x}} \, dt \] Substituting \( \sqrt{x} = \frac{\ln t}{\ln a} \): \[ I = \int \frac{2 \ln t}{\ln a} \cdot \frac{\ln a}{\ln t} \, dt \] This simplifies to: \[ I = \int 2 \, dt \] ### Step 5: Integrate Now we can integrate: \[ I = 2t + C \] ### Step 6: Substitute Back for \( t \) Recall that \( t = a^{\sqrt{x}} \): \[ I = 2a^{\sqrt{x}} + C \] ### Step 7: Final Result Thus, the final result of the integral is: \[ I = \frac{2a^{\sqrt{x}}}{\ln a} + C \] ### Conclusion The value of the integral \( \int \frac{a^{\sqrt{x}}}{\sqrt{x}} \, dx \) is: \[ \frac{2a^{\sqrt{x}}}{\ln a} + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section C: Integration by parts:|6 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section D: Algebraic Integral:|5 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise PART-II ONLY ONE OPTION CORRECT TYPE|6 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

inte^(sqrt(x))dx is equal to

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

Knowledge Check

  • int(cos sqrt(x))/( sqrt(x)) dx is equal to

    A
    ` 2 cos sqrt(x) + C`
    B
    `2 sin sqrt(x) + C`
    C
    ` - 2 sin sqrt( x) + C`
    D
    ` sin sqrt( x) + C`
  • int sqrt((x)/( 1-x))dx is equal to

    A
    `sin^(-1) sqrt(x) + C`
    B
    `sin^(-1) (sqrt((x)(1-x)))+C`
    C
    `sin^(-1)(sqrt(x) - sqrt(x ( 1-x)))+C`
    D
    `sin^(-1) sqrt(x) - sqrt(x(1-x)) +C`
  • Similar Questions

    Explore conceptually related problems

    inttan^(-1)sqrt(x)\ dx is equal to

    int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

    The value of int((x-4))/(x^2sqrt(x-2)) dx is equal to (where , C is the constant of integration )

    int(x+sqrt(x+1))/(x+2) dx is equal to:

    If m,n in N, then the value of int_a^b(x-a)^m(b-x)^n dx is equal to

    int(1+x)/(1+3sqrt(x))dx is equal to