Home
Class 12
MATHS
intsqrt((x-1)/(x+1))dx is equal to...

`intsqrt((x-1)/(x+1))dx` is equal to

A

`sin^(-1)1/x+sqrt(x^(2)+1)/(x)+C`

B

`sqrt(x^(2)-1)/(x)+cos^(-1)x/x+C`

C

`sin^(-1)x+sqrt(x^(2)-1)+C`

D

`tan^(-1)sqrt(x^(2)-1)/(x)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{\frac{x-1}{x+1}} \, dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the Integral**: We start with the integral: \[ I = \int \sqrt{\frac{x-1}{x+1}} \, dx \] 2. **Multiply by the Denominator**: To simplify the expression under the square root, we can multiply both the numerator and the denominator by \( \sqrt{x+1} \): \[ I = \int \frac{\sqrt{x-1} \cdot \sqrt{x+1}}{x+1} \, dx \] 3. **Simplify the Square Root**: This can be rewritten as: \[ I = \int \frac{\sqrt{(x-1)(x+1)}}{x+1} \, dx = \int \frac{\sqrt{x^2 - 1}}{x+1} \, dx \] 4. **Separate the Integral**: We can separate this integral into two parts: \[ I = \int \frac{x \, dx}{\sqrt{x^2 - 1}} - \int \frac{dx}{\sqrt{x^2 - 1}} \] 5. **Substitution for the First Integral**: For the first integral, let \( z^2 = x^2 - 1 \). Then, differentiating gives: \[ 2z \, dz = 2x \, dx \quad \Rightarrow \quad x \, dx = z \, dz \] Thus, we can rewrite the first integral as: \[ \int \frac{z \, dz}{\sqrt{z^2}} = \int z \, dz = \frac{z^2}{2} = \frac{x^2 - 1}{2} \] 6. **Evaluate the Second Integral**: The second integral is a standard form: \[ -\int \frac{dx}{\sqrt{x^2 - 1}} = -\ln |x + \sqrt{x^2 - 1}| \] 7. **Combine the Results**: Putting it all together, we have: \[ I = \frac{x^2 - 1}{2} - \ln |x + \sqrt{x^2 - 1}| + C \] ### Final Result: Thus, the integral evaluates to: \[ \int \sqrt{\frac{x-1}{x+1}} \, dx = \frac{x^2 - 1}{2} - \ln |x + \sqrt{x^2 - 1}| + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-7|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-8|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-5|1 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

intsqrt((x-a)/(b-x))dx

intsqrt((x-3)/(x-4))dx

intsqrt((1-x)/(1+x))dx

intsqrt((a+x)/(x-a))dx

intsqrt((a+x)/(a-x)) dx

intsqrt(x/(1-x))\ dx is equal to (a) sin^(-1)sqrt(x)+C (b) sin^(-1){sqrt(x)-sqrt(x(1-x))}+C (c) sin^(-1){sqrt(x(1-x))}+C (d) sin^(-1)sqrt(x)-sqrt(x(1-x))+C

intsqrt(2x+(1)/(3) dx)

intsqrt(x)dx is equal to

intsqrt(secx+1)dx

intsqrt(x^(2)+1)dx is equal to