Home
Class 12
MATHS
If f(x) = int(2sinx-sin2x)/(x^(3))dx, wh...

If `f(x) = int(2sinx-sin2x)/(x^(3))`dx, where `xne0`, then `Limit_(xto0) f^(')(x)` has the value

Text Solution

AI Generated Solution

To solve the problem, we need to find the limit of the derivative of the function \( f(x) = \int \frac{2 \sin x - \sin 2x}{x^3} \, dx \) as \( x \) approaches 0. ### Step-by-Step Solution: 1. **Define the Function**: \[ f(x) = \int \frac{2 \sin x - \sin 2x}{x^3} \, dx \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise PART III: ONE OR MORE THAN ONE OPTIONS CORRECT TYPE|19 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise COMPREHENSION|5 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-13|9 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (2sinx-sin2x)/(x^(3))

f(x) = sinx - sin2x in [0,pi]

If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}| , then lim_(xto0)(f(x))/(x^(2))=

f(x) is the integral of (2sinx-sin2x)/(x^3),x!=0. Find lim_(x->0)f^(prime)(x)[w h e r ef^(prime)(x)=(df)/(dx)]

If |f(x)|lex^(2), then prove that lim_(xto0) (f(x))/(x)=0.

Evaluate lim_(xto0)(tan2x-sin2x)/(x^(3))

If f(x)=int(sinx)/(cos^(2)x)(1-3sin^(3)x)dx , then value of (f(0)-f(pi)+(9pi)/2) is

If f(x)=sgn(x)" and "g(x)=x^(3) ,then prove that lim_(xto0) f(x).g(x) exists though lim_(xto0) f(x) does not exist.

If f(x)=int_(x)^(x^(2))(dt)/((logt)^(2)),xne0 then f(x) is

If f(x)={{:((x-|x|)/(x)","xne0),(2", "x=0):}, show that lim_(xto0) f(x) does not exist.