Home
Class 12
MATHS
Find the domain of the function f(x)=sqr...

Find the domain of the function `f(x)=sqrt(-log_((x+4)/2)(log_2((2x-1)/(3+x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sqrt{-\log_{\frac{x+4}{2}} \left( \log_2 \left( \frac{2x-1}{3+x} \right) \right)} \), we need to ensure that the expression inside the square root is non-negative. This means we need to solve the inequality: \[ -\log_{\frac{x+4}{2}} \left( \log_2 \left( \frac{2x-1}{3+x} \right) \right) \geq 0 \] This leads us to the condition: \[ \log_{\frac{x+4}{2}} \left( \log_2 \left( \frac{2x-1}{3+x} \right) \right) \leq 0 \] ### Step 1: Determine when the logarithm is defined For the logarithm \( \log_2 \left( \frac{2x-1}{3+x} \right) \) to be defined, the argument must be positive: \[ \frac{2x-1}{3+x} > 0 \] This gives us two conditions: 1. \( 2x - 1 > 0 \) which simplifies to \( x > \frac{1}{2} \) 2. \( 3 + x > 0 \) which simplifies to \( x > -3 \) Since \( x > \frac{1}{2} \) is the stricter condition, we have: \[ x > \frac{1}{2} \] ### Step 2: Analyze the logarithm's base Next, we need to ensure that the base of the logarithm \( \frac{x+4}{2} \) is valid. The base must be positive and cannot be equal to 1: 1. \( \frac{x+4}{2} > 0 \) simplifies to \( x + 4 > 0 \) or \( x > -4 \). 2. \( \frac{x+4}{2} \neq 1 \) simplifies to \( x + 4 \neq 2 \) or \( x \neq -2 \). The condition \( x > -4 \) is less strict than \( x > \frac{1}{2} \), so we will use \( x > \frac{1}{2} \). ### Step 3: Determine when the logarithm is non-positive Now we need to solve: \[ \log_{\frac{x+4}{2}} \left( \log_2 \left( \frac{2x-1}{3+x} \right) \right) \leq 0 \] This inequality holds when: 1. \( \log_2 \left( \frac{2x-1}{3+x} \right) \leq 1 \) when \( \frac{x+4}{2} > 1 \) (which is true for \( x > -2 \)). 2. \( \log_2 \left( \frac{2x-1}{3+x} \right) \geq 1 \) when \( \frac{x+4}{2} < 1 \) (not applicable here since \( x > \frac{1}{2} \)). So we solve: \[ \frac{2x-1}{3+x} \leq 2 \] Cross-multiplying gives: \[ 2x - 1 \leq 2(3 + x) \] This simplifies to: \[ 2x - 1 \leq 6 + 2x \] Subtracting \( 2x \) from both sides: \[ -1 \leq 6 \] This is always true, so we need to check the other condition \( \frac{2x-1}{3+x} > 0 \) which we already established. ### Conclusion The only condition that restricts \( x \) is \( x > \frac{1}{2} \). Therefore, the domain of the function is: \[ \boxed{( \frac{1}{2}, \infty )} \]

To find the domain of the function \( f(x) = \sqrt{-\log_{\frac{x+4}{2}} \left( \log_2 \left( \frac{2x-1}{3+x} \right) \right)} \), we need to ensure that the expression inside the square root is non-negative. This means we need to solve the inequality: \[ -\log_{\frac{x+4}{2}} \left( \log_2 \left( \frac{2x-1}{3+x} \right) \right) \geq 0 \] This leads us to the condition: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise JEE MAIN|15 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Find the domain of the function : f(x)=sin^(-1)((log)_2x)

Find the domain of the function : f(x)=sin^(-1)((log)_2x)

Find the domain of the function : f(x)=1/(sqrt((log)_(1/2)(x^2-7x+13)))

Find the domain of the function : f(x)=1/(sqrt((log)_(1/2)(x^2-7x+13)))

The domain of the function f(x)=(log)_(3+x)(x^2-1) is

Find the domain of the function : f(x)=sqrt(((log)_(0. 3)|x-2|)/(|x|))

The domain of the function f(x)=sqrt( log_(2) sinx ) , is

Find the domain of the function : f(x)=(log)_((x-4))(x^2-11 x+24)

The domain of the function f(x)=sin^(-1)log_(3)(x/3)) is

Find the domain of the function : f(x)=sqrt((log)_(10){((log)_(10)x)/(2(3-(log)_(10)x)}}