Home
Class 12
MATHS
Find the domain of the function f(x)=sqr...

Find the domain of the function `f(x)=sqrt(-log_((x+4)/2)(log_2((2x-1)/(3+x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sqrt{-\log_{\frac{x+4}{2}} \left( \log_2 \left( \frac{2x-1}{3+x} \right) \right)} \), we need to ensure that the expression inside the square root is non-negative. This means we need to solve the inequality: \[ -\log_{\frac{x+4}{2}} \left( \log_2 \left( \frac{2x-1}{3+x} \right) \right) \geq 0 \] This leads us to the condition: \[ \log_{\frac{x+4}{2}} \left( \log_2 \left( \frac{2x-1}{3+x} \right) \right) \leq 0 \] ### Step 1: Determine when the logarithm is defined For the logarithm \( \log_2 \left( \frac{2x-1}{3+x} \right) \) to be defined, the argument must be positive: \[ \frac{2x-1}{3+x} > 0 \] This gives us two conditions: 1. \( 2x - 1 > 0 \) which simplifies to \( x > \frac{1}{2} \) 2. \( 3 + x > 0 \) which simplifies to \( x > -3 \) Since \( x > \frac{1}{2} \) is the stricter condition, we have: \[ x > \frac{1}{2} \] ### Step 2: Analyze the logarithm's base Next, we need to ensure that the base of the logarithm \( \frac{x+4}{2} \) is valid. The base must be positive and cannot be equal to 1: 1. \( \frac{x+4}{2} > 0 \) simplifies to \( x + 4 > 0 \) or \( x > -4 \). 2. \( \frac{x+4}{2} \neq 1 \) simplifies to \( x + 4 \neq 2 \) or \( x \neq -2 \). The condition \( x > -4 \) is less strict than \( x > \frac{1}{2} \), so we will use \( x > \frac{1}{2} \). ### Step 3: Determine when the logarithm is non-positive Now we need to solve: \[ \log_{\frac{x+4}{2}} \left( \log_2 \left( \frac{2x-1}{3+x} \right) \right) \leq 0 \] This inequality holds when: 1. \( \log_2 \left( \frac{2x-1}{3+x} \right) \leq 1 \) when \( \frac{x+4}{2} > 1 \) (which is true for \( x > -2 \)). 2. \( \log_2 \left( \frac{2x-1}{3+x} \right) \geq 1 \) when \( \frac{x+4}{2} < 1 \) (not applicable here since \( x > \frac{1}{2} \)). So we solve: \[ \frac{2x-1}{3+x} \leq 2 \] Cross-multiplying gives: \[ 2x - 1 \leq 2(3 + x) \] This simplifies to: \[ 2x - 1 \leq 6 + 2x \] Subtracting \( 2x \) from both sides: \[ -1 \leq 6 \] This is always true, so we need to check the other condition \( \frac{2x-1}{3+x} > 0 \) which we already established. ### Conclusion The only condition that restricts \( x \) is \( x > \frac{1}{2} \). Therefore, the domain of the function is: \[ \boxed{( \frac{1}{2}, \infty )} \]

To find the domain of the function \( f(x) = \sqrt{-\log_{\frac{x+4}{2}} \left( \log_2 \left( \frac{2x-1}{3+x} \right) \right)} \), we need to ensure that the expression inside the square root is non-negative. This means we need to solve the inequality: \[ -\log_{\frac{x+4}{2}} \left( \log_2 \left( \frac{2x-1}{3+x} \right) \right) \geq 0 \] This leads us to the condition: ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise JEE MAIN|15 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Find the domain of the function : f(x)=sin^(-1)((log)_2x)

Find the domain of the function : f(x)=sin^(-1)((log)_2x)

Find the domain of the function : f(x)=1/(sqrt((log)_(1/2)(x^2-7x+13)))

Find the domain of the function : f(x)=1/(sqrt((log)_(1/2)(x^2-7x+13)))

The domain of the function f(x)=(log)_(3+x)(x^2-1) is

Find the domain of the function : f(x)=sqrt(((log)_(0. 3)|x-2|)/(|x|))

The domain of the function f(x)=sqrt( log_(2) sinx ) , is

Find the domain of the function : f(x)=(log)_((x-4))(x^2-11 x+24)

The domain of the function f(x)=sin^(-1)log_(3)(x/3)) is

Find the domain of the function : f(x)=sqrt((log)_(10){((log)_(10)x)/(2(3-(log)_(10)x)}}

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-HLP_TYPE
  1. Find the domain of the function f(x)=sqrt(-log((x+4)/2)(log2((2x-1)/(3...

    Text Solution

    |

  2. f(x)=sqrt(x^(12)-x^(9)+x^(4)-x+1)

    Text Solution

    |

  3. Find the values of a in the domain of the definition of the function, ...

    Text Solution

    |

  4. The domain of the function f(x)=sqrt(1/((x|-1)cos^(- 1)(2x+1)tan3x)) ...

    Text Solution

    |

  5. The domain of the function sqrt(log(1/3) log4 ([x]^2 - 5 )) is (where...

    Text Solution

    |

  6. Find the domain of the following function: f(x)=1/([|x-1|]+[|12-x|]-11...

    Text Solution

    |

  7. Domain of the function f(x) = (x+0. 5)^log(0. 5+x)((x^2+2x-3)/(4x^2-4x...

    Text Solution

    |

  8. Find the domain of the following function: f(x)=5/([(x-1)/2])-3^(sin^(...

    Text Solution

    |

  9. Find the domain of the following function: 3^(y)+2^(x^(4))=2^(4x^(2)-1...

    Text Solution

    |

  10. The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes t...

    Text Solution

    |

  11. find the range of the function f(x)=1/(2{-x})-{x} occurs at x equals ...

    Text Solution

    |

  12. If f:RtoR,f(x)=(sqrt(x^(2)+1)-3x)/(sqrt(x^(2)+1)+x) then find the rang...

    Text Solution

    |

  13. If a function is defined as f(x)=sqrt(log(h(x))g(x)), where g(x)=|sinx...

    Text Solution

    |

  14. f(x)=cos^(-1)sqrt(log([x])""abs(x)/x), where [*] denotes the greatest ...

    Text Solution

    |

  15. Find the domain and range of the following function: f(x)=sqrt(log(1...

    Text Solution

    |

  16. f(x)=sin^-1[log2(x^2/2)] where [ . ] denotes the greatest integer func...

    Text Solution

    |

  17. Find the domain and range of the following function: f(x)=log([x-1])...

    Text Solution

    |

  18. Find the domain and range of the following function: f(x)=tan^(-1)(s...

    Text Solution

    |

  19. If f(x)=(sin^2 x+4sinx+5)/(2sin^2x+8sinx+8) then range of f(x) is

    Text Solution

    |

  20. Find range of the function f(x)=log(2)[3x-[x+[x+[x]]]] (where [.] is...

    Text Solution

    |