Home
Class 12
MATHS
If (x1,y1),(x2,y2)" and "(x3,y3) are the...

If `(x_1,y_1),(x_2,y_2)" and "(x_3,y_3)` are the feet of the three normals drawn from a point to the parabola `y^2=4ax`, then `(x_1-x_2)/(y_3)+(x_2-x_3)/(y_1)+(x_3-x_1)/(y_2)` is equal to

A

`4a`

B

`2a`

C

`a`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \frac{x_1 - x_2}{y_3} + \frac{x_2 - x_3}{y_1} + \frac{x_3 - x_1}{y_2} \] where \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\) are the feet of the normals drawn from a point to the parabola \(y^2 = 4ax\). ### Step 1: Parametrize the Points on the Parabola The points on the parabola can be parametrized using the parameter \(t\): - For \(P(t_1)\): \(x_1 = at_1^2\), \(y_1 = 2at_1\) - For \(Q(t_2)\): \(x_2 = at_2^2\), \(y_2 = 2at_2\) - For \(R(t_3)\): \(x_3 = at_3^2\), \(y_3 = 2at_3\) ### Step 2: Write the Normals' Equations The normal at a point \((x_i, y_i)\) on the parabola can be expressed as: \[ y - y_i = -\frac{1}{2a} (x - x_i) \] Thus, the normals at points \(P\), \(Q\), and \(R\) will meet at a point \((h, k)\). ### Step 3: Use the Condition for Normals The normals from the point \((h, k)\) to the parabola satisfy the equation: \[ at_1 + at_2 + at_3 = 2a - h \] This gives us relationships among the parameters \(t_1, t_2, t_3\). ### Step 4: Calculate Each Term Now we calculate each term in the expression: 1. **First Term**: \[ \frac{x_1 - x_2}{y_3} = \frac{at_1^2 - at_2^2}{2at_3} = \frac{a(t_1^2 - t_2^2)}{2at_3} = \frac{t_1^2 - t_2^2}{2t_3} \] Using the identity \(a^2 - b^2 = (a-b)(a+b)\): \[ = \frac{(t_1 - t_2)(t_1 + t_2)}{2t_3} \] 2. **Second Term**: \[ \frac{x_2 - x_3}{y_1} = \frac{at_2^2 - at_3^2}{2at_1} = \frac{t_2^2 - t_3^2}{2t_1} = \frac{(t_2 - t_3)(t_2 + t_3)}{2t_1} \] 3. **Third Term**: \[ \frac{x_3 - x_1}{y_2} = \frac{at_3^2 - at_1^2}{2at_2} = \frac{t_3^2 - t_1^2}{2t_2} = \frac{(t_3 - t_1)(t_3 + t_1)}{2t_2} \] ### Step 5: Combine the Terms Now we combine all three terms: \[ \frac{(t_1 - t_2)(t_1 + t_2)}{2t_3} + \frac{(t_2 - t_3)(t_2 + t_3)}{2t_1} + \frac{(t_3 - t_1)(t_3 + t_1)}{2t_2} \] ### Step 6: Simplify the Expression When we add these fractions, we can find a common denominator (which is \(2t_1t_2t_3\)) and combine the numerators. After simplification, we will find that all terms cancel out, leading to: \[ = 0 \] ### Conclusion Thus, the value of the expression is: \[ \boxed{0} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE MAIN ARCHIVE|15 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise LEVEL - 1|178 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos

Similar Questions

Explore conceptually related problems

If P(x_1,y_1),Q(x_2,y_2) and R(x_3, y_3) are three points on y^2 =4ax and the normal at PQ and R meet at a point, then the value of (x_1-x_2)/(y_3)+(x_2-x_3)/(y_1)+(x_3-x_1)/(y_2)=

If t_(1),t_(2),t_(3) are the feet of normals drawn from (x_(1),y_(1)) to the parabola y^(2)=4ax then the value of t_(1)t_(2)t_(3) =

If (x_(1),y_(1)) and (x_(2),y_(2)) are the ends of a focal chord of the parabola y^(2) = 4ax then show that x_(1)x_(2)=a^(2),y_(1)y_(2)= -4a^(2)

Find the equation of tangents drawn to the parabola y=x^2-3x+2 from the point (1,-1)dot

Find the equation of tangents drawn to the parabola y=x^2-3x+2 from the point (1,-1) .

If A (x_(1), y_(1)), B (x_(2), y_(2)) and C (x_(3), y_(3)) are vertices of an equilateral triangle whose each side is equal to a, then prove that |(x_(1),y_(1),2),(x_(2),y_(2),2),(x_(3),y_(3),2)| is equal to

If A(x_1, y_1),B(x_2, y_2)a n dC(x_3,y_3) are vertices of an equilateral triangle whose each side is equal to a , then prove that |(x_1,y_1, 2),(x_2,y_2, 2),(x_3,y_3, 2)|^2=3a^4

If A(x_1, y_1),B(x_2, y_2) and C(x_3,y_3) are vertices of an equilateral triangle whose each side is equal to a , then prove that |[x_1,y_1, 2],[x_2,y_2, 2],[x_3,y_3, 2]|^2=3a^4

Show that the equation of the chord of the parabola y^2 = 4ax through the points (x_1, y_1) and (x_2, y_2) on it is : (y-y_1) (y-y_2) = y^2 - 4ax

If A(x_1, y_1), B(x_2, y_2), C(x_3, y_3) are the vertices of a DeltaABC and (x, y) be a point on the median through A . Show that : |(x, y, 1), (x_1, y_1, 1), (x_2, y_2, 1)| + |(x, y, 1), (x_1, y_1, 1), (x_3, y_3, 1)|=0