Home
Class 12
MATHS
int(0)^(log 2)(e^(x))/(1+e^(x))dx=...

`int_(0)^(log 2)(e^(x))/(1+e^(x))dx=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{0}^{\log 2} \frac{e^{x}}{1 + e^{x}} \, dx, \] we will use a substitution method. ### Step 1: Substitution Let \[ T = 1 + e^{x}. \] Then, differentiating both sides gives us \[ dT = e^{x} \, dx \quad \Rightarrow \quad dx = \frac{dT}{e^{x}}. \] ### Step 2: Express \( e^{x} \) in terms of \( T \) From our substitution, we have \[ e^{x} = T - 1. \] ### Step 3: Change the limits of integration Now we need to change the limits of integration according to our substitution. - When \( x = 0 \): \[ T = 1 + e^{0} = 1 + 1 = 2. \] - When \( x = \log 2 \): \[ T = 1 + e^{\log 2} = 1 + 2 = 3. \] So the new limits of integration are from \( T = 2 \) to \( T = 3 \). ### Step 4: Substitute into the integral Now we substitute \( e^{x} \) and \( dx \) into the integral: \[ \int_{0}^{\log 2} \frac{e^{x}}{1 + e^{x}} \, dx = \int_{2}^{3} \frac{T - 1}{T} \cdot \frac{dT}{T - 1} = \int_{2}^{3} \frac{1}{T} \, dT. \] ### Step 5: Evaluate the integral Now we can evaluate the integral: \[ \int \frac{1}{T} \, dT = \log T. \] Thus, we have: \[ \int_{2}^{3} \frac{1}{T} \, dT = \log T \Big|_{2}^{3} = \log 3 - \log 2. \] ### Step 6: Simplify the result Using the logarithmic property \( \log a - \log b = \log \frac{a}{b} \): \[ \log 3 - \log 2 = \log \frac{3}{2}. \] ### Final Answer Therefore, the value of the integral is \[ \int_{0}^{\log 2} \frac{e^{x}}{1 + e^{x}} \, dx = \log \frac{3}{2}. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2) (e^(-1//x))/(x^(2)) dx

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

int_(0)^(1) (dx)/(e^(x)+e^(-x))

The solution of the equation int_(log_(2))^(x) (1)/(e^(x)-1)dx=log(3)/(2) is given by x=

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

I=int_(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to

int_(0)^(1)e^(2x)e^(e^(x) dx =)

The value of the integral int_0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. int(0)^(log 2)(e^(x))/(1+e^(x))dx=

    Text Solution

    |

  2. Given fuction,{(x^(2), "for" 0 le x lt1),(sqrtx, "for" 1le x le 2):} ...

    Text Solution

    |

  3. Evaluate the integral I=int(0)^(2)|x-1|dx.

    Text Solution

    |

  4. Evaluate the following integral: int0^(pi//2)(sqrt(cotx))/(sqrt(cotx\ ...

    Text Solution

    |

  5. Show that int(0)^(pi)xf(sinx)dx=(pi)/2 int(0)^(pi)"fr"(sinx)dx.

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. Evaluate : int0^(pi/2)(xsinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  8. Prove that int(a)^(b)f(x)dx=(b-a)int(0)^(1)f((b-a)x+a)dx

    Text Solution

    |

  9. Evaluate the following definite integral: int(-sqrt(2))^(sqrt(2))(2...

    Text Solution

    |

  10. Evaluate int(-2)^(2)(d x)/(4+ x^(2))directly as well as by

    Text Solution

    |

  11. If int(a)^(b)f(dx)dx=l(1), int(a)^(b)g(x)dx = l(2) then :

    Text Solution

    |

  12. (1)/(c )int(ac)^(bc)f((x)/(c ))dx=

    Text Solution

    |

  13. int(0)^(pi//2n)(dx)/(1+(tan nx)^(n)) is equal to n in N :

    Text Solution

    |

  14. overset(pi//2)underset(-pi//2)int (cos x)/(1+e^(x))dx=

    Text Solution

    |

  15. int(0)^(2pi)[|sin x|+|cos x|]dx, where [.] denotes the greatest intege...

    Text Solution

    |

  16. If f(pi)=2 and int(0)^(pi)(f(x)+f''(x))sin x dx=5, then f(0) is equal ...

    Text Solution

    |

  17. If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then underset(...

    Text Solution

    |

  18. Evaluate: int0^(4pi)(dx)/(cos^2x(2+tan^2x)

    Text Solution

    |

  19. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  20. The value of int(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the g...

    Text Solution

    |