Home
Class 12
MATHS
int(0)^(log 2)(e^(x))/(1+e^(x))dx=...

`int_(0)^(log 2)(e^(x))/(1+e^(x))dx=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{0}^{\log 2} \frac{e^{x}}{1 + e^{x}} \, dx, \] we will use a substitution method. ### Step 1: Substitution Let \[ T = 1 + e^{x}. \] Then, differentiating both sides gives us \[ dT = e^{x} \, dx \quad \Rightarrow \quad dx = \frac{dT}{e^{x}}. \] ### Step 2: Express \( e^{x} \) in terms of \( T \) From our substitution, we have \[ e^{x} = T - 1. \] ### Step 3: Change the limits of integration Now we need to change the limits of integration according to our substitution. - When \( x = 0 \): \[ T = 1 + e^{0} = 1 + 1 = 2. \] - When \( x = \log 2 \): \[ T = 1 + e^{\log 2} = 1 + 2 = 3. \] So the new limits of integration are from \( T = 2 \) to \( T = 3 \). ### Step 4: Substitute into the integral Now we substitute \( e^{x} \) and \( dx \) into the integral: \[ \int_{0}^{\log 2} \frac{e^{x}}{1 + e^{x}} \, dx = \int_{2}^{3} \frac{T - 1}{T} \cdot \frac{dT}{T - 1} = \int_{2}^{3} \frac{1}{T} \, dT. \] ### Step 5: Evaluate the integral Now we can evaluate the integral: \[ \int \frac{1}{T} \, dT = \log T. \] Thus, we have: \[ \int_{2}^{3} \frac{1}{T} \, dT = \log T \Big|_{2}^{3} = \log 3 - \log 2. \] ### Step 6: Simplify the result Using the logarithmic property \( \log a - \log b = \log \frac{a}{b} \): \[ \log 3 - \log 2 = \log \frac{3}{2}. \] ### Final Answer Therefore, the value of the integral is \[ \int_{0}^{\log 2} \frac{e^{x}}{1 + e^{x}} \, dx = \log \frac{3}{2}. \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2) (e^(-1//x))/(x^(2)) dx

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

Knowledge Check

  • If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

    A
    `k-1+(e )/(2)`
    B
    `k + 1 - ( e )/( 2)`
    C
    `k - 1 - ( e)/(2)`
    D
    `k+1+(e )/(2)`
  • Similar Questions

    Explore conceptually related problems

    int_(0)^(1) (dx)/(e^(x)+e^(-x))

    The solution of the equation int_(log_(2))^(x) (1)/(e^(x)-1)dx=log(3)/(2) is given by x=

    I=int_(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to

    If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

    The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to

    int_(0)^(1)e^(2x)e^(e^(x) dx =)

    The value of the integral int_0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx