Home
Class 12
MATHS
The integral int(2)^(4)(logx^(2))/(logx^...

The integral `int_(2)^(4)(logx^(2))/(logx^(2)+log(36-12x+x^(2))) dx` is equal to

A

2

B

4

C

1

D

6

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise Level - 1|190 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx is equal to (A) x^2+c (B) x^3/3+c (C) x^2/2+c (D) none of these

The value of the integral int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx is equal to (A) x^2+c (B) x^3/3+c (C) x^2/2+c (D) none of these

Evaluate int_(1)^(2)(logx)/(x)dx

int(log(x+1)-logx)/(x(x+1))dx is equal to :

The value of int_(0)^(oo)(logx)/(a^(2)+x^(2))dx is

The value of int_(0)^(oo) (logx)/(1+x^(2))dx , is

int(x^(2)(1-logx))/((logx)^(4)-x^(4))dx equals

int((x+1)(x+logx)^2)/(2x)dx

int(logx/(1+logx)^2)dx

Evaluate int((x+1)/(x))(x+logx)^(2)dx