Home
Class 12
MATHS
int(1+x^(4))/((1-x^(4))^(3//2))dx is equ...

`int(1+x^(4))/((1-x^(4))^(3//2))dx` is equal to

A

`(1)/(sqrt(x^(2)-(1)/(x^(2))))+C`

B

`(1)/(sqrt(1/(x^(2))-x^(2)))+C`

C

`(1)/(sqrt((1)/(x^(2))+x^(2)))+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1 + x^4}{(1 - x^4)^{3/2}} \, dx \), we will follow a systematic approach. ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1 + x^4}{(1 - x^4)^{3/2}} \, dx \] We can separate the numerator: \[ I = \int \frac{1}{(1 - x^4)^{3/2}} \, dx + \int \frac{x^4}{(1 - x^4)^{3/2}} \, dx \] ### Step 2: Simplify the Second Integral For the second integral, we can factor out \( x^2 \): \[ \int \frac{x^4}{(1 - x^4)^{3/2}} \, dx = \int \frac{x^2 \cdot x^2}{(1 - x^4)^{3/2}} \, dx = \int \frac{x^2}{(1 - x^4)^{3/2}} \cdot x^2 \, dx \] ### Step 3: Substitution Let \( u = 1 - x^4 \). Then, differentiating gives: \[ du = -4x^3 \, dx \quad \Rightarrow \quad dx = \frac{du}{-4x^3} \] We also have \( x^4 = 1 - u \), so \( x^2 = \sqrt[4]{1 - u} \). ### Step 4: Change of Variables Now, substituting \( u \) into the integral: \[ I = \int \frac{1}{u^{3/2}} \cdot \frac{du}{-4x^3} + \int \frac{\sqrt[4]{1 - u}^2}{u^{3/2}} \cdot \frac{du}{-4x^3} \] This simplifies to: \[ I = -\frac{1}{4} \int \frac{1}{u^{3/2}} \cdot \frac{du}{x^3} + \text{(other terms)} \] ### Step 5: Solve the Integral We can evaluate the integral: \[ \int u^{-3/2} \, du = -2u^{-1/2} + C \] Thus, substituting back: \[ I = -\frac{1}{4} \left( -2(1 - x^4)^{-1/2} \right) + C = \frac{1}{2(1 - x^4)^{1/2}} + C \] ### Final Result Thus, the final result for the integral is: \[ I = \frac{1}{\sqrt{1 - x^4}} + C \]

To solve the integral \( I = \int \frac{1 + x^4}{(1 - x^4)^{3/2}} \, dx \), we will follow a systematic approach. ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1 + x^4}{(1 - x^4)^{3/2}} \, dx \] We can separate the numerator: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

The value of int1/(x^(2)(x^(4)+1)^(3//4)) dx is equal to

Knowledge Check

  • int(x^(9))/((4x^(2)+ 1)^(6))dx is equal to

    A
    `(1)/(10) ( 4+(1)/(x^(2)))^(-5)+C`
    B
    `(1)/(10x) ( 4+(1)/(x^(2)))^(-5)+C`
    C
    `(1)/(5) ( 4+(1)/(x^(2)))^(-5)+C`
    D
    `(1)/(5x) ( 4+(1)/(x^(2)))^(-5)+C`
  • Similar Questions

    Explore conceptually related problems

    int(2x^(2)(1+2x^(2)))/((1+x^(2)+x^(4))^(2))dx is equal to

    int(1)/(x^(1//2)(1+x^(2))^(5//4))dx is equal to

    int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

    int[(x)^(1//3)-(1)/((x^())^(1//3))]dx is equal to :

    int(1)/(x(x^(4)-1))dx is equal to

    int(1-x^(2))/((1+x^(2))sqrt(1+x^(4)))dx is equal to

    int(x^(4)+1)/(x^(6)+1)dx is equal to