Home
Class 12
MATHS
If y= log (x+sqrt(x^2-1)), then dy/dx=...

If y= `log (x+sqrt(x^2-1))`, then dy/dx=

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function \( y = \log(x + \sqrt{x^2 - 1}) \), we will follow these steps: ### Step 1: Differentiate the function We start with the function: \[ y = \log(x + \sqrt{x^2 - 1}) \] To differentiate \( y \) with respect to \( x \), we apply the chain rule and the derivative of the logarithm function. ### Step 2: Apply the chain rule The derivative of \( \log(u) \) is \( \frac{1}{u} \cdot \frac{du}{dx} \). Here, \( u = x + \sqrt{x^2 - 1} \). Thus, we have: \[ \frac{dy}{dx} = \frac{1}{x + \sqrt{x^2 - 1}} \cdot \frac{d}{dx}(x + \sqrt{x^2 - 1}) \] ### Step 3: Differentiate \( u \) Now we need to differentiate \( u = x + \sqrt{x^2 - 1} \): \[ \frac{du}{dx} = \frac{d}{dx}(x) + \frac{d}{dx}(\sqrt{x^2 - 1}) \] The derivative of \( x \) is \( 1 \). For \( \sqrt{x^2 - 1} \), we use the chain rule: \[ \frac{d}{dx}(\sqrt{x^2 - 1}) = \frac{1}{2\sqrt{x^2 - 1}} \cdot \frac{d}{dx}(x^2 - 1) = \frac{1}{2\sqrt{x^2 - 1}} \cdot (2x) = \frac{x}{\sqrt{x^2 - 1}} \] So, we have: \[ \frac{du}{dx} = 1 + \frac{x}{\sqrt{x^2 - 1}} \] ### Step 4: Substitute back into the derivative Now substituting \( \frac{du}{dx} \) back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{x + \sqrt{x^2 - 1}} \left( 1 + \frac{x}{\sqrt{x^2 - 1}} \right) \] ### Step 5: Simplify the expression To simplify \( 1 + \frac{x}{\sqrt{x^2 - 1}} \), we can write it as: \[ 1 + \frac{x}{\sqrt{x^2 - 1}} = \frac{\sqrt{x^2 - 1}}{\sqrt{x^2 - 1}} + \frac{x}{\sqrt{x^2 - 1}} = \frac{\sqrt{x^2 - 1} + x}{\sqrt{x^2 - 1}} \] Thus, we have: \[ \frac{dy}{dx} = \frac{\sqrt{x^2 - 1} + x}{(x + \sqrt{x^2 - 1}) \sqrt{x^2 - 1}} \] ### Step 6: Final simplification Notice that \( \sqrt{x^2 - 1} + x \) and \( x + \sqrt{x^2 - 1} \) are the same. Therefore, we can cancel these terms: \[ \frac{dy}{dx} = \frac{1}{\sqrt{x^2 - 1}} \] ### Final Result Thus, we conclude that: \[ \frac{dy}{dx} = \frac{1}{\sqrt{x^2 - 1}} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If x=sqrt(1-y^2) , then (dy)/(dx)=

y=log_e(tan^(- 1)sqrt(1+x^2)) then dy/dx is

Knowledge Check

  • If y=log(sece^(x^(2))) , then (dy)/(dx) =

    A
    `x^(2)e^(x^(2))tane^(x^(2))`
    B
    `e^(x^(2))tane^(x^(2))`
    C
    `2xe^(x^(2))tane^(x^(2))`
    D
    none of these
  • If y="log"(xe^(x)),"then "(dy)/(dx) is

    A
    `(x+1)/(x)`
    B
    `1/(x)`
    C
    `1-x`
    D
    none of the above
  • Similar Questions

    Explore conceptually related problems

    If y={log(x+sqrt(x^2+1))}^2 , show that (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)=2 .

    If y= tan ^-1 ((x)/sqrt(a^2-x^2)) then dy/dx =?

    If y= log (sin x) , then (dy)/(dx) is

    If y=log\ [x+sqrt(x^2+1)] , prove that (x^2+1)(d^2\ y)/(dx^2)+x(dy)/(dx)=0

    If y=log\ [x+sqrt(x^2+1)] , prove that (x^2+1)(d^2\ y)/(dx^2)+x(dy)/(dx)=0

    If tan^(-1)(Y/X) = log (sqrt(X^2+Y^2)) , prove that (dy/dx) = ((X+Y)/(X-Y))