Home
Class 12
MATHS
sin^(-1)3x...

`sin^(-1)3x`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate \( y = \sin^{-1}(3x) \) with respect to \( x \), we will use the chain rule and the formula for the derivative of the inverse sine function. ### Step-by-Step Solution: 1. **Identify the function**: Let \( y = \sin^{-1}(3x) \). 2. **Use the derivative formula**: The derivative of \( \sin^{-1}(u) \) with respect to \( u \) is given by: \[ \frac{dy}{du} = \frac{1}{\sqrt{1 - u^2}} \] where \( u = 3x \). 3. **Differentiate \( u \)**: Now, we need to find \( \frac{du}{dx} \): \[ u = 3x \implies \frac{du}{dx} = 3 \] 4. **Apply the chain rule**: According to the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] 5. **Substitute the derivatives**: Substitute \( u = 3x \) into the derivative formula: \[ \frac{dy}{du} = \frac{1}{\sqrt{1 - (3x)^2}} = \frac{1}{\sqrt{1 - 9x^2}} \] Now, substituting back into the chain rule: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - 9x^2}} \cdot 3 \] 6. **Final expression**: Thus, the derivative of \( y = \sin^{-1}(3x) \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{3}{\sqrt{1 - 9x^2}} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{3}{\sqrt{1 - 9x^2}} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5d|51 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(sin^(-1)(3-x))/("In"(|x|-2)) is

Find the domain of the following functions. f(x)=(sin^(-1)(3-x))/(ln(|x|-2))

The domain of the function f(x)=(sin^(-1)(3-x))/(log_(e)(|-x|-2)) , is

The domain of the function f(x)=(sin^(-1)(3-x))/(I n(|x|-2)i s (a) [2,4] (b) (2,3)uu(3,4] (c) (0,1)uu(1,oo) (d) (-oo,-3)uu(2,oo)

If sin^(- 1)(3/x)+sin^(- 1)(4/x)=pi/2 then x=

(d)/(dx)(sin h^(-1)(3x))=

Range of the function : f(x)=log_2((pi+2sin^(- 1)((3-x)/7))/pi)

If "sin"^(-1)(1)/(3)+"sin"^(-1)(2)/(3)=sin^(-1)x , then the value of x is

If a le 1/32 then the number of solution of (sin^(-1) x)^(3) +(cos^(-1) x)^(3) = a pi^(3) is

f(x) = sin^(-1)x+x^(2)-3x + (x^(3))/(3),x in[0,1]