Home
Class 12
MATHS
x^(2)/a^2+y^2/b^2=1 find (dy)/(dx)...

`x^(2)/a^2+y^2/b^2=1` find `(dy)/(dx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \] we will use implicit differentiation. Here are the steps: ### Step 1: Differentiate both sides of the equation Differentiate the left-hand side with respect to \(x\): \[ \frac{d}{dx}\left(\frac{x^2}{a^2}\right) + \frac{d}{dx}\left(\frac{y^2}{b^2}\right) = \frac{d}{dx}(1). \] ### Step 2: Apply the differentiation rules Using the constant multiple rule and the chain rule, we differentiate each term: 1. For \(\frac{x^2}{a^2}\): \[ \frac{d}{dx}\left(\frac{x^2}{a^2}\right) = \frac{2x}{a^2}. \] 2. For \(\frac{y^2}{b^2}\): \[ \frac{d}{dx}\left(\frac{y^2}{b^2}\right) = \frac{2y}{b^2} \cdot \frac{dy}{dx}. \] 3. The derivative of the constant \(1\) is \(0\). Putting it all together, we have: \[ \frac{2x}{a^2} + \frac{2y}{b^2} \cdot \frac{dy}{dx} = 0. \] ### Step 3: Rearrange the equation Now, isolate \(\frac{dy}{dx}\): \[ \frac{2y}{b^2} \cdot \frac{dy}{dx} = -\frac{2x}{a^2}. \] ### Step 4: Solve for \(\frac{dy}{dx}\) To solve for \(\frac{dy}{dx}\), divide both sides by \(\frac{2y}{b^2}\): \[ \frac{dy}{dx} = -\frac{2x}{a^2} \cdot \frac{b^2}{2y}. \] ### Step 5: Simplify the expression The \(2\) in the numerator and denominator cancels out: \[ \frac{dy}{dx} = -\frac{x b^2}{y a^2}. \] Thus, the final answer is: \[ \frac{dy}{dx} = -\frac{x b^2}{y a^2}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If (x^2+y^2)^2=x y , find (dy)/(dx)

If (x^2+y^2)^2=x y , find (dy)/(dx)

y=(x^2+1/x^2)^3 find dy/dx

y=x^(2)+(1)/(x^(2)) . Find (dy)/(dx)

If x^2+y^2=x-y Find dy/dx

If (x+y)^2=2a x y , find (dy)/(dx)

If y=sin^(-1)((1-x^2)/(1+x^2))+cos^(-1)((1-x^2)/(1+x^2)) , find (dy)/(dx) .

If y^2=a x^2+b x+c , then find (dy)/(dx)

If y=[x(x-2)^2] then Find (dy)/(dx)

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .