Home
Class 12
MATHS
y=x^(sin2x)...

`y=x^(sin2x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = x^{\sin(2x)} \), we will follow these steps: ### Step 1: Rewrite the function We start with the function: \[ y = x^{\sin(2x)} \] ### Step 2: Take the natural logarithm of both sides Taking the natural logarithm helps us simplify the expression: \[ \log y = \log(x^{\sin(2x)}) \] ### Step 3: Apply the logarithmic identity Using the property of logarithms, we can rewrite the right-hand side: \[ \log y = \sin(2x) \cdot \log x \] ### Step 4: Differentiate both sides with respect to \( x \) Now we differentiate both sides. For the left-hand side, we use implicit differentiation: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(\sin(2x) \cdot \log x) \] ### Step 5: Apply the product rule on the right-hand side Using the product rule \( (u \cdot v)' = u'v + uv' \), where \( u = \sin(2x) \) and \( v = \log x \): - \( u' = 2 \cos(2x) \) (since the derivative of \( \sin(2x) \) is \( 2\cos(2x) \)) - \( v' = \frac{1}{x} \) (since the derivative of \( \log x \) is \( \frac{1}{x} \)) Thus, we have: \[ \frac{d}{dx}(\sin(2x) \cdot \log x) = \sin(2x) \cdot \frac{1}{x} + \log x \cdot 2 \cos(2x) \] ### Step 6: Substitute back into the equation Now substituting back into our equation gives: \[ \frac{1}{y} \frac{dy}{dx} = \sin(2x) \cdot \frac{1}{x} + 2 \cos(2x) \cdot \log x \] ### Step 7: Solve for \( \frac{dy}{dx} \) Multiplying both sides by \( y \): \[ \frac{dy}{dx} = y \left( \sin(2x) \cdot \frac{1}{x} + 2 \cos(2x) \cdot \log x \right) \] ### Step 8: Substitute back for \( y \) Since \( y = x^{\sin(2x)} \), we substitute back: \[ \frac{dy}{dx} = x^{\sin(2x)} \left( \sin(2x) \cdot \frac{1}{x} + 2 \cos(2x) \cdot \log x \right) \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = x^{\sin(2x)} \left( \frac{\sin(2x)}{x} + 2 \cos(2x) \log x \right) \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y=x^(2)sin(x^(3)) , then int ydx will be :

Let C_(1):y=x^(2)sin3x,C_(2):y=x^(2)and C_(3):y=-y^(2), then

Differentiate the given functions w.r.t.x. (i) y = (ln"x")^(cos"x") (ii) y = x^x-2^(sin x)

If y=e^(tanx) , then (cos^2x)y2-(1+sin2x)y1=0

If y=(sin x)^(x)+x^(2) find (dy)/(dx)

If " " y=(sin(x/2)+cos(x/2))^2, (dy)/(dx) at x=pi/6

Find the equation of the normal to the curve y=(1+x)^y+sin^(-1)(sin^2x) at x=0.

If y=(1+x)^y+sin^-1(sin^2x) , then (dy)/(dx) at x = 0 is

Find the equation of the normal to the curve y=(1+x)^y+sin^(-1)(sin^2x) at x=0.

Solve the equation for x and y , |sin x + cos x|^( sin^(2) x-1//4)=1+|siny| and cos^(2)y=1+sin^(2)y .