Home
Class 12
MATHS
f,g,h are continuous in [0,a],f(a-x)=f(x...

`f,g,h` are continuous in `[0,a],f(a-x)=f(x),g(a-x)=-g(x),3h(x)-4h(a-x)=5`. Then prove that `int_(0)^(a)f(x)g(x)h(x)dx=0`.

Text Solution

Verified by Experts

`I=int_(0)^(a)f(x)g(x)h(x)dx`
`=int_(0)^(a)f(a-x)g(a-x)h(a-x)dx`
`=int_(0)^(oo) f(x)(-g(x))((3h(x)-5)/4)dx`
`=-3/4int_(0)^(a)f(x)g(x)h(x)dx+5/4int_(0)^(a)f(x)g(x)dx`
`=-3/4+5/4int_(0)^(a)f(x)g(x)dx`
`:.I=5/7 int_(0)^(a)f(x)g(x)dx`
`=5/7int_(0)^(a)f(a-x)g(a-x)dx`
`=5/7int_(0)^(a)f(x)(-g)dx`
`=-I`
or `2I=0` or `I=0`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CAE_TYPE|88 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise JEE ADVANCED|38 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" and "g(x)+g(a-x)=4 " then " int_(0)^(a)f(x)g(x)dx is equal to

If f(x) and g(x) be continuous in the interval [0, a] and satisfy the conditions f(x)=f(a-x) and g(x)+g(a-x)=a , then show that int_(0)^(a)f(x)g(x)dx=(a)/(2)int_(0)^(a)f(x)dx . Hence find the value of int_(0)^(pi)xsinxdx .

If (d)/(dx)f(x)=g(x) , then the value of int_(a)^(b)f(x)g(x)dx is -

Evaluate: int[f(x)g''(x)-f ''(x)g(x)]dx

int [f(x)g"(x) - f"(x)g(x)]dx is

If y=|(f(x),g(x),h(x)),(l,m,n),(a, b,c)| , prove that, (dy)/(dx)=|(f'(x),g'(x),h'(x)),(l,m,n),(a, b,c)|

If f(x)=1/(4x^(2)) , then proved that (f(x-h)-f(x+h))/h=x/((x^(2)-h^(2))^(2))

Let f(x) be a function satisfying f'(x)=f(x) with f(0)=1 and g(x) be the function satisfying f(x)+g(x)=x^(2) .Prove that, int_(0)^(1)f(x)g(x)dx=(1)/(2)(2e-e^(2)-3)

If y=|{:(f(x),g(x),h(x)),(l,m,n),(a,b,c):}| , prove that (dy)/(dx)=|{:(f'(x),g'(x),h'(x)),(l,m,n),(a,b,c):}| .

Prove that lim_(x->0) (f(x+h)+f(x-h)-2f(x))/h^2 = f''(x)

CENGAGE PUBLICATION-DEFINITE INTEGRATION -SOLVED EXAMPLE_TYPE
  1. f,g,h are continuous in [0,a],f(a-x)=f(x),g(a-x)=-g(x),3h(x)-4h(a-x)=5...

    Text Solution

    |

  2. Evaluate int(0)^((pi)/2)(sin3x)/(sinx+cosx) dx.

    Text Solution

    |

  3. Let f:[0,4]rarrR be a differentiable function then for some alpha, bet...

    Text Solution

    |

  4. Prove that int(0)^(oo) (sin^(2)x)/(x^(2))dx=int(0)^(oo) (sinx)/x dx

    Text Solution

    |

  5. If int0^(pi/2)logsinthetadtheta=k , then find the value of intpi^(pi/2...

    Text Solution

    |

  6. Evaluate: int0^pi(xsin2xsin(pi/2cosx))/(2x-pi)dx

    Text Solution

    |

  7. Find the value of int(-pi/3)^(pi/3)(pi+4x^3)/(2-cos(|x|pi/3))dx

    Text Solution

    |

  8. It is known that f(x) is an odd function and has a period p. Prove tha...

    Text Solution

    |

  9. Evaluate: int0^(pi/4)(tan^(-1)((2cos^2theta)/(2-sin2theta)))sec^2theta...

    Text Solution

    |

  10. If f(x)=(sinx)/xAAx in (0,pi], prove that pi/2int0^(pi/2)f(x)f(pi/2-x)...

    Text Solution

    |

  11. Let f(x) be a continuous function AAx in R , except at x=0, such that...

    Text Solution

    |

  12. If xint0^xsin(f(t))dt=(x+2)int0^x tsin(f(t))dt ,w h e r ex >0, then sh...

    Text Solution

    |

  13. Show that: int0^(pi//2)f(sin2x)sinxdx=sqrt(2)int0^(pi//4)f(cos2x)co...

    Text Solution

    |

  14. Let a+b=4,w h e r ea<2,a n dl e tg(x) be a differentiable function. If...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. If f(x+f(y))=f(x)+yAAx ,y in R and f(0)=1, then prove that int0^2f(2-...

    Text Solution

    |

  17. Suppose f is a real-valued differentiable function defined on [1,oo] w...

    Text Solution

    |

  18. Let f be a contiuous function on [a,b]. If F(x)=(int(a)^(x)f(t)dt-int(...

    Text Solution

    |

  19. f(x) is a continuous and bijective function on Rdot If AAt in R , the...

    Text Solution

    |

  20. If f(x)=x+int0^1 t(x+t) f(t)dt, then find the value of the definite in...

    Text Solution

    |