Home
Class 12
MATHS
f,g,h are continuous in [0,a],f(a-x)=f(x...

`f,g,h` are continuous in `[0,a],f(a-x)=f(x),g(a-x)=-g(x),3h(x)-4h(a-x)=5`. Then prove that `int_(0)^(a)f(x)g(x)h(x)dx=0`.

Text Solution

Verified by Experts

`I=int_(0)^(a)f(x)g(x)h(x)dx`
`=int_(0)^(a)f(a-x)g(a-x)h(a-x)dx`
`=int_(0)^(oo) f(x)(-g(x))((3h(x)-5)/4)dx`
`=-3/4int_(0)^(a)f(x)g(x)h(x)dx+5/4int_(0)^(a)f(x)g(x)dx`
`=-3/4+5/4int_(0)^(a)f(x)g(x)dx`
`:.I=5/7 int_(0)^(a)f(x)g(x)dx`
`=5/7int_(0)^(a)f(a-x)g(a-x)dx`
`=5/7int_(0)^(a)f(x)(-g)dx`
`=-I`
or `2I=0` or `I=0`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CAE_TYPE|88 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise SCQ_TYPE|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise JEE ADVANCED|38 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" and "g(x)+g(a-x)=4 " then " int_(0)^(a)f(x)g(x)dx is equal to

If f(x) and g(x) be continuous in the interval [0, a] and satisfy the conditions f(x)=f(a-x) and g(x)+g(a-x)=a , then show that int_(0)^(a)f(x)g(x)dx=(a)/(2)int_(0)^(a)f(x)dx . Hence find the value of int_(0)^(pi)xsinxdx .

Knowledge Check

  • If (d)/(dx)f(x)=g(x) , then the value of int_(a)^(b)f(x)g(x)dx is -

    A
    `(1)/(2)[f(b)-f(a)]`
    B
    `(1)/(2)[g(b)-g(a)]`
    C
    `(1)/(2)[{f(b)}^(2)-{f(a)}^(2)]`
    D
    `(1)/(2)[{g(b)}^(2)-{g(a)}^(2)]`
  • int [f(x)g"(x) - f"(x)g(x)]dx is

    A
    f/g'
    B
    f'g - fg'
    C
    fg' - f'g
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    Evaluate: int[f(x)g''(x)-f ''(x)g(x)]dx

    If y=|(f(x),g(x),h(x)),(l,m,n),(a, b,c)| , prove that, (dy)/(dx)=|(f'(x),g'(x),h'(x)),(l,m,n),(a, b,c)|

    If f(x)=1/(4x^(2)) , then proved that (f(x-h)-f(x+h))/h=x/((x^(2)-h^(2))^(2))

    Let f(x) be a function satisfying f'(x)=f(x) with f(0)=1 and g(x) be the function satisfying f(x)+g(x)=x^(2) .Prove that, int_(0)^(1)f(x)g(x)dx=(1)/(2)(2e-e^(2)-3)

    If y=|{:(f(x),g(x),h(x)),(l,m,n),(a,b,c):}| , prove that (dy)/(dx)=|{:(f'(x),g'(x),h'(x)),(l,m,n),(a,b,c):}| .

    Prove that lim_(x->0) (f(x+h)+f(x-h)-2f(x))/h^2 = f''(x)