Home
Class 12
MATHS
Let f(x)=lim(nto oo) 1/n((x+1/n)^(2)+(x+...

Let `f(x)=lim_(nto oo) 1/n((x+1/n)^(2)+(x+2/n)^(2)+……….+(x+(n-1)/n)^(2))`
Then the minimum value of `f(x)` is

A

`1//4`

B

`1//6`

C

`1//9`

D

`1//12`

Text Solution

Verified by Experts

The correct Answer is:
D

`f(x)=lim_(nto oo)( 1/n)(x+1/n)^(2)+(x+2/n)^(2)+………+(x+(n-1)/n)^(2)`
`=int_(0)^(1)(x+y)^(2)dy`
`=x^(2)+x+1/3`
`:. f(x)=(x+1/2)^(2)+1/3-1/4`
`:.f(x)|_("min")=1/12`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE PUBLICATION|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE PUBLICATION|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then f has

Let f(x)=lim_(ntooo) (1)/(((3)/(pi)tan^(-1)2x)^(2n)+5) . Then the set of values of x for which f(x)=0 is

Knowledge Check

  • Let for all xgt0,f(x)=lim_(nto oo)n(x^((1)/(n))-1) , then

    A
    `f(xy)+f((1)/(x))=1`
    B
    `f(xy)=f(x)+f(y)`
    C
    `f(xy)=xf(y)+yf(x)`
    D
    `f(xy)=xf(x)+yf(y)`
  • Let, x_(n) = (1-(1)/(3))^(2)(1-(1)/(6))^(2)(1-(1)/(10))^(2)…(1-(1)/((n(n+1))/(2)))^(2), n ge 2 Then the value of underset(n rarr oo)lim _(n) is

    A
    `(1)/(3)`
    B
    `(1)/(9)`
    C
    `(1)/(81)`
    D
    0 (zero)
  • Let x_n = (1 - 1/3)^2 (1-1/6)^2 (1-1/10)^2 ...... (1 - 1/((n(n + 1))/2))^2, n ge 2 Then the value of underset(nrarrinfty)(lim) x_n is

    A
    1/5
    B
    1/9
    C
    1/81
    D
    0
  • Similar Questions

    Explore conceptually related problems

    Let f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n)) . Then the value of int_(o)^(oo)f(x)dx is equal to

    lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

    lim_(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^(2)), n in N , equals

    If L=lim_(nto oo) (n^(3)(e^(1//n)+e^(2//n)+………+e))/((n+1)^(m)(1^(m)+4^(m)+….+n^(2m))) is non zero finite real, then

    If lim_(x->2)(x^n-2^n)/(x-2)=80 and n in N ,then find the value of n.