Home
Class 12
MATHS
Find the locus of the point (t^2+t+1,t^2...

Find the locus of the point `(t^2+t+1,t^2-t+1),t in Rdot`

Text Solution

Verified by Experts

Let `(h,h)-=(t^2-t+1,t^2+t+1)`
or `h=t^2-t+1` and `k=t^2+t+1`
or `k-h=2t`
or `t=(k-h)/(2)`
or `h=((k-h)/(2))^(2)-((k-h)/(2))+1`
The required locus is
`x=((x-y)/(2))^2-((y-x)/(2))+1`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Illustration1.66|1 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Illustration1.67|1 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Illustration1.64|1 Videos
  • COORDINATE SYSTEM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE PUBLICATION|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

(ii) Find the value of t if the point (-t,t^2+t+1) is equidistant from the axes.

(vi) Find the value of t if the point (2,t^2-5t-6) lie on the x-axis.

(a) Find the value of t if the point (4,t^2-4t+4) lie on the x-axis.

If t is parameter then the locus of the point P(t,(1)/(2t)) is _

For the real parameter t,the locus of the complex number z=(1-t^2)+isqrt(1+t^2) in the complex plane is

If x=t+(1/t), y=t-(1/t) and t=parameter then the locus of the point (x, y) is __

For the variable t, the locus of the points of intersection of lines x-2y=t and x+2y=(1)/(t) is

For the variable t , the locus of the points of intersection of lines x - 2y = t and x + 2y = (1)/(t) is _

Let z=t^2-1+sqrt(t^4-t^2),where t in R is a parameter. Find the locus of z depending upon t , and draw the locus of z in the Argand plane.

If int_(0)^(1)(e^(t))/(1+t)dt=a then find the value of int_(0)^(1)(e^(t))/((1+t)^(2))dt in terms of a .

CENGAGE PUBLICATION-COORDINATE SYSYEM -Illustration1.65
  1. Find the locus of the point (t^2+t+1,t^2-t+1),t in Rdot

    Text Solution

    |