Home
Class 12
MATHS
If A(cosalpha,sinalpha),B(sinalpha,-cosa...

If `A(cosalpha,sinalpha),B(sinalpha,-cosalpha),C(1,2)` are the vertices of ` A B C ,` then as `alpha` varies, find the locus of its centroid.

Text Solution

Verified by Experts

Let (h,k) be the triangle . Then, `h=(cosalpha+sinalpha+1)/(3)`
and `k=(sinalpha-cosalpha+2)/(3)`
or `3h-1=cosalpha+sinalpha`
and `3k-2=sinalpha-cosalpha`
Squareing and adding, we get
` (3h-1)^2+(3k-2)^2=2`
or `9(h^2+k^2)-6h-12k+3=0`
or `3(h^2+k^2)-2h-4k+1=0`
Therefore the locus of the centroid is `3(x^2+y^2)-2x-4y+1=0` .
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Solved examples|9 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Concept applications 1.1|6 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Illustration1.66|1 Videos
  • COORDINATE SYSTEM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE PUBLICATION|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

If A = [(cosalpha, sinalpha),(-sinalpha,cosalpha)] prove that, A A^(') = I. Hence, find A^(-1) .

If 3cos alpha-4sinalpha=5 , show that, 3sinalpha+4cosalpha=0 .

Knowledge Check

  • If tantheta=(sin alpha-cos alpha)/(sinalpha+cosalpha)1 then

    A
    `sinalpha-cosalpha=+-sqrt2sintheta`
    B
    `sinalpha+cosalpha=+-sqrt2costheta`
    C
    `cos2theta-sin2alpha`
    D
    `sin2theta+cos2alpha=0`
  • If (2sinalpha)/(1+cosalpha+sinalpha) =x, then (1-cosalpha+sinalpha)/(1+sinalpha) =

    A
    1/x
    B
    x
    C
    1+x
    D
    1-x
  • For a real number alpha , let A(alpha) denote the matrix ((cosalpha,sinalpha),(-sinalpha,cosalpha)) . Then for real numbers alpha_(1) and alpha_(2) , the value of A(alpha_(1))A(alpha_(2)) is -

    A
    `A(alpha_(1)alpha_(2))`
    B
    `A(alpha_(1)+alpha_(2))`
    C
    `A(alpha_(1)-alpha_(2))`
    D
    `A(alpha_(2)-alpha_(1))`
  • Similar Questions

    Explore conceptually related problems

    (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2 =

    The points A(0,0),B(cosalpha,sinalpha) and C(cosbeta,sinbeta) are the vertices of a right-angled triangle then

    If f(alpha)=[[cosalpha,-sinalpha,0],[sinalpha,cosalpha,0],[ 0, 0, 1]],t h e n prove that [F(alpha)]^(-1)=F(-alpha)dot

    P(cosalpha,sinalpha), Q(cosbeta, sinbeta) , R(cosgamma, singamma) are vertices of triangle whose orthocenter is (0, 0) then the value of cos(alpha-beta) + cos(beta-gamma) + cos(gamma-alpha) is

    Find the amplitude of sinalpha+i(1-cosalpha)