Home
Class 12
MATHS
If the coordinates of a variable point P...

If the coordinates of a variable point `P` are `(acostheta,bsintheta),` where `theta` is a variable quantity, then find the locus of `Pdot`

Text Solution

Verified by Experts

Let `P -=(x,y)`. According to the question,
`x=acostheta`(1)
`y=bsintheta` (2)
Sqaureing and adding (1) and (2), we get
`(x^2)/(a^2)+(y^2)/(b^2)=cos^2theta+sin^2theta`
or `(x^2)/(a^2)+(y^2)/(b^2)=1`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Illustration1.65|1 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Illustration1.66|1 Videos
  • COORDINATE SYSYEM

    CENGAGE PUBLICATION|Exercise Illustration1.63|1 Videos
  • COORDINATE SYSTEM

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE PUBLICATION|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

The coordinates of a moving point P are [6sectheta ,8tantheta] where theta is a variable parameter . Show that equation to the locus of P is (x^(2))/(36)-(y^(2))/(64)=1 .

The coordinates of a moving point P are (ct+(c)/(t),ct-(c)/(T)) , where t is a variable parameter . Find the equation to the locus of P.

Knowledge Check

  • If the co-ordinates of a variable point P be (t +1/t, t - 1/t) where t is the variable quantity, then the locus of P is :

    A
    xy =8
    B
    `2x^2 - y^2 = 8`
    C
    `x^2 -y^2 = 4`
    D
    `2x^2 + 3y^2 = a^2`
  • If the co-ordinates of a variable point P be (cos theta + sin theta, sin theta - cos theta) where theta is the perimeter, then the locus of P is :

    A
    `x^2 - y^2 = 4`
    B
    `x^2 + y^2 =2`
    C
    xy = 3
    D
    `x^2 + 2y^2 = 3`
  • For all values of theta , the coordinates of a moving point P are (acostheta,asintheta) , the locus of P will be a-

    A
    circle
    B
    straight line
    C
    parabola
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    The coordinates of a moving point P are (at^(2),2at) , where t is a variable parameter . Find the equation to the locus of P.

    Vertices of a variable triangle are A (3,4),B(5costheta, 5sintheta) and C (5sintheta,-5costheta) where theta is a parameter then, find the locus of its orthocentre.

    For all values of theta , the coordinates of a moving point P are (acostheta,bsintheta) , find the equation to the locus of P.

    The coordinates of moving point P are ((2t+1)/(3t-2),(t-1)/(t+1)) , where t is a variable parameter . Find the equation to the locus of P.

    The coordinates of a moving point P are [(a)/(2)("coses"theta+sintheta),(b)/(2)("coses"theta-sintheta)] , where theta is a variable parameter Show that , the , the equation to the locus of P is b^(2)x^(2)-a^(2)y^(2)=a^(2)b^(2) .