Home
Class 8
MATHS
If 4 sin theta = 3 cos theta , " then "...

If ` 4 sin theta = 3 cos theta , " then " (sec^(2) theta )/( 4 ( 1 - tan^(2) theta ))` is

A

`(25)/( 16)`

B

` (25)/( 28)`

C

` (1)/(4)`

D

` (16)/( 25)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: **Step 1:** Given the equation: \[ 4 \sin \theta = 3 \cos \theta \] **Step 2:** Rearranging the equation: \[ \frac{\sin \theta}{\cos \theta} = \frac{3}{4} \] This implies: \[ \tan \theta = \frac{3}{4} \] **Step 3:** Finding \( \tan^2 \theta \): \[ \tan^2 \theta = \left(\frac{3}{4}\right)^2 = \frac{9}{16} \] **Step 4:** Using the identity for \( \sec^2 \theta \): \[ \sec^2 \theta = 1 + \tan^2 \theta \] Substituting the value of \( \tan^2 \theta \): \[ \sec^2 \theta = 1 + \frac{9}{16} \] To add these, convert 1 to a fraction: \[ \sec^2 \theta = \frac{16}{16} + \frac{9}{16} = \frac{25}{16} \] **Step 5:** Now, we need to evaluate the expression: \[ \frac{\sec^2 \theta}{4(1 - \tan^2 \theta)} \] **Step 6:** Calculate \( 1 - \tan^2 \theta \): \[ 1 - \tan^2 \theta = 1 - \frac{9}{16} \] Convert 1 to a fraction: \[ 1 - \tan^2 \theta = \frac{16}{16} - \frac{9}{16} = \frac{7}{16} \] **Step 7:** Substitute \( \sec^2 \theta \) and \( 1 - \tan^2 \theta \) into the expression: \[ \frac{\sec^2 \theta}{4(1 - \tan^2 \theta)} = \frac{\frac{25}{16}}{4 \cdot \frac{7}{16}} \] **Step 8:** Simplifying the expression: \[ = \frac{25}{16} \cdot \frac{16}{4 \cdot 7} = \frac{25}{4 \cdot 7} = \frac{25}{28} \] Thus, the final answer is: \[ \frac{25}{28} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 34|1 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 35|1 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 32|1 Videos
  • TRIANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet|10 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 32 |10 Videos

Similar Questions

Explore conceptually related problems

sin^(4) theta + 2 cos^(2) theta (1 - (1)/( sec^(2) theta)) + cos ^(4) theta =

If (sin theta + cos theta)/(sin theta - cos theta) = (5)/(4) , the value of (tan^(2) theta + 1)/(tan^(2) theta - 1) is

If sin theta = 3/4 and tan theta =9/2, then cos theta is

(cos theta-sin theta) / (cos theta + sin theta) = sec2 theta-tan2 theta

If tan theta + sec theta = n, then sec ^(4) theta - tan ^(4) theta- 2 sec theta tan theta =

Prove that (sin theta - cos theta +1)/(sin theta + cos theta -1) = (1)/((sec theta - tan theta)).

(sin theta-cos theta + 1) / (sin theta + cos theta-1) = sec theta + tan theta

S CHAND IIT JEE FOUNDATION-TRIGONOMETRICAL RATIOS -Self Assessment Sheet - 33
  1. If 4 sin theta = 3 cos theta , " then " (sec^(2) theta )/( 4 ( 1 - ta...

    Text Solution

    |