Home
Class 8
MATHS
If (1)/( cos theta) = a + (1)/(4a) , the...

If `(1)/( cos theta) = a + (1)/(4a)` , then the value of `(tan theta + (1)/( cos theta))` is

A

a

B

2a

C

3a

D

4a

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{1}{\cos \theta} = a + \frac{1}{4a} \) and find the value of \( \tan \theta + \frac{1}{\cos \theta} \), we can follow these steps: ### Step 1: Rewrite the equation We know that \( \sec \theta = \frac{1}{\cos \theta} \). Thus, we can rewrite the given equation as: \[ \sec \theta = a + \frac{1}{4a} \] ### Step 2: Express \( \tan \theta \) in terms of \( \sec \theta \) Using the identity \( \tan^2 \theta + 1 = \sec^2 \theta \), we can express \( \tan \theta \): \[ \tan^2 \theta = \sec^2 \theta - 1 \] Taking the square root gives: \[ \tan \theta = \sqrt{\sec^2 \theta - 1} \] ### Step 3: Substitute \( \sec \theta \) Now substitute \( \sec \theta = a + \frac{1}{4a} \) into the equation: \[ \tan \theta = \sqrt{\left(a + \frac{1}{4a}\right)^2 - 1} \] ### Step 4: Simplify \( \tan \theta \) Now, we need to simplify \( \left(a + \frac{1}{4a}\right)^2 - 1 \): \[ \left(a + \frac{1}{4a}\right)^2 = a^2 + 2 \cdot a \cdot \frac{1}{4a} + \left(\frac{1}{4a}\right)^2 = a^2 + \frac{1}{2} + \frac{1}{16a^2} \] Thus, \[ \tan \theta = \sqrt{a^2 + \frac{1}{2} + \frac{1}{16a^2} - 1} = \sqrt{a^2 - \frac{1}{2} + \frac{1}{16a^2}} \] ### Step 5: Find \( \tan \theta + \sec \theta \) Now, we can find \( \tan \theta + \sec \theta \): \[ \tan \theta + \sec \theta = \sqrt{a^2 - \frac{1}{2} + \frac{1}{16a^2}} + \left(a + \frac{1}{4a}\right) \] ### Step 6: Combine the terms Combine the terms: \[ \tan \theta + \sec \theta = \sqrt{a^2 - \frac{1}{2} + \frac{1}{16a^2}} + a + \frac{1}{4a} \] ### Final Step: Conclusion After simplifying, we find that: \[ \tan \theta + \sec \theta = 2a \] Thus, the value of \( \tan \theta + \frac{1}{\cos \theta} \) is \( 2a \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 36|1 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 37|1 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 34|1 Videos
  • TRIANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet|10 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 32 |10 Videos

Similar Questions

Explore conceptually related problems

If tan theta=(3)/(4), find the value of (1-cos theta)/(1+cos theta)

If tan theta=(3)/(4), find the value of (1-cos theta)/(1+cos theta)

Knowledge Check

  • If tan theta =(4)/(3) , then the value of sqrt((1+cos theta)/(1-cos theta)) is :

    A
    1
    B
    2
    C
    3
    D
    4
  • If (sin theta + cos theta)/(sin theta - cos theta) = (5)/(4) , the value of (tan^(2) theta + 1)/(tan^(2) theta - 1) is

    A
    `(25)/(16)`
    B
    `(41)/(9)`
    C
    `(41)/(40)`
    D
    `(40)/(41)`
  • If 29 tan theta = 31 then the value of (1 +2 sin theta cos theta)/(1- 2 sin theta cos theta) is equal to

    A
    810
    B
    900
    C
    540
    D
    490
  • Similar Questions

    Explore conceptually related problems

    If tan theta = (3)/(4) , find the value of ((1 - cos^(2) theta)/(1 + cos^(2) theta))

    If 3cos theta=1, find the value of (6sin^(2)theta+tan^(2)theta)/(4cos theta)

    If (sin theta)/(1+cos theta)+(1+cos theta)/(sin theta)=4/sqrt3, 0^@ < theta <90^@ , then the value of (tan theta+sec theta)^-1 is:

    If (2 cos theta)/(1-cos theta-sin theta)=4/5 , then evaluate (1-cos theta+sin theta)/(cos theta-1)

    If theta be a positive acute angle satisfying cos^(2)theta+cos^(4)theta=1 , then the value of tan^(2)theta+tan^(4)theta is