Home
Class 8
MATHS
If cos x = (12)/( 13) and x is an acute...

If ` cos x = (12)/( 13)` and x is an acute angle, then
`sqrt((1 + (sin x)/(cos x))( 1- tan x)) ` is

A

`(sqrt(115))/(12)`

B

` (sqrt(116))/( 12)`

C

` (sqrt(119))/( 12)`

D

` (sqrt(117))/( 12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given information: **Given:** \[ \cos x = \frac{12}{13} \] and \(x\) is an acute angle. We need to evaluate the expression: \[ \sqrt{\left(1 + \frac{\sin x}{\cos x}\right)\left(1 - \tan x\right)} \] ### Step 1: Find \(\sin x\) Using the Pythagorean identity: \[ \sin^2 x + \cos^2 x = 1 \] we can find \(\sin x\): \[ \sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{12}{13}\right)^2 \] Calculating \(\cos^2 x\): \[ \cos^2 x = \frac{144}{169} \] Thus, \[ \sin^2 x = 1 - \frac{144}{169} = \frac{169 - 144}{169} = \frac{25}{169} \] Taking the square root (since \(x\) is acute): \[ \sin x = \frac{5}{13} \] ### Step 2: Find \(\tan x\) Using the definition of tangent: \[ \tan x = \frac{\sin x}{\cos x} = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12} \] ### Step 3: Substitute values into the expression Now substitute \(\sin x\) and \(\tan x\) into the expression: \[ \sqrt{\left(1 + \frac{\sin x}{\cos x}\right)\left(1 - \tan x\right)} = \sqrt{\left(1 + \frac{5/13}{12/13}\right)\left(1 - \frac{5}{12}\right)} \] ### Step 4: Simplify the first term Calculating \(1 + \frac{5/13}{12/13}\): \[ 1 + \frac{5}{12} = \frac{12}{12} + \frac{5}{12} = \frac{17}{12} \] ### Step 5: Simplify the second term Calculating \(1 - \tan x\): \[ 1 - \frac{5}{12} = \frac{12}{12} - \frac{5}{12} = \frac{7}{12} \] ### Step 6: Combine the two terms Now we substitute back into the expression: \[ \sqrt{\left(\frac{17}{12}\right)\left(\frac{7}{12}\right)} = \sqrt{\frac{119}{144}} \] ### Step 7: Final simplification Taking the square root: \[ \sqrt{\frac{119}{144}} = \frac{\sqrt{119}}{12} \] ### Conclusion Thus, the final answer is: \[ \frac{\sqrt{119}}{12} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 35|1 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 36|1 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 33|1 Videos
  • TRIANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet|10 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 32 |10 Videos

Similar Questions

Explore conceptually related problems

sqrt((tan x)/(sin x cos x))

tan ^ (- 1) ((1 + sin x) / (cos x))

tan ^ (- 1) ((1 + sin x) / (cos x))

tan^(-1)((sin x)/(1+cos x))

tan ^ (- 1) ((sin x) / (1 + cos x))

tan^(-1)((cos x)/(1-sin x))

tan ^(-1)(sqrt((1-cos 3 x)/(1+cos x)))

(1-cos 2x + sin x)/(sin 2x + cos x) = tan x

tan ^(-1)((cos x)/(1+sin x ))

tan^(-1)((cos x)/(1+sin x))