Home
Class 8
MATHS
If p = cos x - sin x, q = (1 - sin ^(3)...

If p = cos x - sin x, q = `(1 - sin ^(3) x)/( 1 - sin x) , r = (1 + cos ^(3) x)/( 1 + cos x)` what is the value of p + q + r ?

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( p + q + r \) where \( p = \cos x - \sin x \), \( q = \frac{1 - \sin^3 x}{1 - \sin x} \), and \( r = \frac{1 + \cos^3 x}{1 + \cos x} \), we will simplify each term step by step. ### Step 1: Simplifying \( q \) Given: \[ q = \frac{1 - \sin^3 x}{1 - \sin x} \] We can use the identity for the difference of cubes: \[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \] Here, let \( a = 1 \) and \( b = \sin x \). Therefore: \[ 1 - \sin^3 x = (1 - \sin x)(1 + \sin^2 x + \sin x) \] Substituting this back into \( q \): \[ q = \frac{(1 - \sin x)(1 + \sin^2 x + \sin x)}{1 - \sin x} \] The \( 1 - \sin x \) terms cancel out (as long as \( \sin x \neq 1 \)): \[ q = 1 + \sin^2 x + \sin x \] ### Step 2: Simplifying \( r \) Now, we simplify \( r \): \[ r = \frac{1 + \cos^3 x}{1 + \cos x} \] Using the identity for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Let \( a = 1 \) and \( b = \cos x \). Therefore: \[ 1 + \cos^3 x = (1 + \cos x)(1 - \cos x + \cos^2 x) \] Substituting this back into \( r \): \[ r = \frac{(1 + \cos x)(1 - \cos x + \cos^2 x)}{1 + \cos x} \] The \( 1 + \cos x \) terms cancel out (as long as \( \cos x \neq -1 \)): \[ r = 1 - \cos x + \cos^2 x \] ### Step 3: Adding \( p \), \( q \), and \( r \) Now we have: - \( p = \cos x - \sin x \) - \( q = 1 + \sin^2 x + \sin x \) - \( r = 1 - \cos x + \cos^2 x \) Let's add them together: \[ p + q + r = (\cos x - \sin x) + (1 + \sin^2 x + \sin x) + (1 - \cos x + \cos^2 x) \] Combining like terms: 1. The \( \cos x \) terms: \( \cos x - \cos x = 0 \) 2. The \( \sin x \) terms: \( -\sin x + \sin x = 0 \) 3. The constant terms: \( 1 + 1 = 2 \) 4. The \( \sin^2 x \) and \( \cos^2 x \) terms: \( \sin^2 x + \cos^2 x = 1 \) So we have: \[ p + q + r = 2 + 1 = 3 \] ### Final Answer The value of \( p + q + r \) is \( 3 \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 37|1 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 38|1 Videos
  • TRIGONOMETRICAL RATIOS

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 35|1 Videos
  • TRIANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet|10 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    S CHAND IIT JEE FOUNDATION|Exercise Self Assessment Sheet - 32 |10 Videos

Similar Questions

Explore conceptually related problems

(cos x)/(1-sin x)=(1+cos x+sin x)/(1+cos x-sin x)

If sin x cos x = 1//2 , then what is the value of sin x - cos x ?

Knowledge Check

  • If sin x = 1/3and cos y = 1/3 , then what is the value of sin (x + y) ?

    A
    `2//3`
    B
    `4//9`
    C
    `5//9`
    D
    1
  • If p = a sin x +b cos x and q = a cos x - b sin x , then what is the value of p^2 + q^2 ?

    A
    a +b
    B
    ab
    C
    `a^2 +b^2`
    D
    `a^2 -b^2`
  • If than x = (4)/( 3) , then the value of sqrt(((1 - sin x) (1 + sin x))/((1 + cos x)(1 - cos x)))

    A
    `(9)/(16)`
    B
    `(3)/(4)`
    C
    `(4)/(3)`
    D
    `(16)/(9)`
  • Similar Questions

    Explore conceptually related problems

    1- (sin ^ (2) x) / (1 + cos x) + (1 + cos x) / (sin x) - (sin x) / (1-cos x) =

    If cos x + cos^2 x = 1 , then what is the value of sin^2 x + sin^4 x ?

    (cos^(3) x- sin^(2) x)/(cos x - sin x)=(1)/(2) (2 + sin 2x)

    3. (sin x+cos x)(1-sin x cos x)=sin^(3)x+cos^(3)x

    cos x + cos y = (1) / (3), sin x + sin y = (1) / (4) rArr sin (x + y)