To determine whether the statement \( |(ax, by, cz), (x^2, y^2, z^2), (1, 1, 1)| = |(a, b, c), (x, y, z), (yz, zx, xy)| \) is true or false, we will calculate the determinants of both matrices and compare them.
### Step 1: Calculate the determinant of the first matrix
The first matrix is:
\[
\begin{vmatrix}
ax & by & cz \\
x^2 & y^2 & z^2 \\
1 & 1 & 1
\end{vmatrix}
\]
We will expand this determinant using the first row:
\[
= ax \begin{vmatrix}
y^2 & z^2 \\
1 & 1
\end{vmatrix} - by \begin{vmatrix}
x^2 & z^2 \\
1 & 1
\end{vmatrix} + cz \begin{vmatrix}
x^2 & y^2 \\
1 & 1
\end{vmatrix}
\]
Calculating the 2x2 determinants:
\[
\begin{vmatrix}
y^2 & z^2 \\
1 & 1
\end{vmatrix} = y^2 - z^2
\]
\[
\begin{vmatrix}
x^2 & z^2 \\
1 & 1
\end{vmatrix} = x^2 - z^2
\]
\[
\begin{vmatrix}
x^2 & y^2 \\
1 & 1
\end{vmatrix} = x^2 - y^2
\]
Substituting these back into the determinant:
\[
= ax(y^2 - z^2) - by(x^2 - z^2) + cz(x^2 - y^2)
\]
### Step 2: Simplify the expression
Expanding the expression:
\[
= axy^2 - axz^2 - bxy^2 + byz^2 + czx^2 - czy^2
\]
Combining like terms:
\[
= (ax - by)y^2 + (by - cz)z^2 + czx^2
\]
### Step 3: Calculate the determinant of the second matrix
The second matrix is:
\[
\begin{vmatrix}
a & b & c \\
x & y & z \\
yz & zx & xy
\end{vmatrix}
\]
We will expand this determinant using the first row:
\[
= a \begin{vmatrix}
y & z \\
zx & xy
\end{vmatrix} - b \begin{vmatrix}
x & z \\
yz & xy
\end{vmatrix} + c \begin{vmatrix}
x & y \\
yz & zx
\end{vmatrix}
\]
Calculating the 2x2 determinants:
\[
\begin{vmatrix}
y & z \\
zx & xy
\end{vmatrix} = y \cdot xy - z \cdot zx = xy^2 - z^2x
\]
\[
\begin{vmatrix}
x & z \\
yz & xy
\end{vmatrix} = x \cdot xy - z \cdot yz = x^2y - z^2y
\]
\[
\begin{vmatrix}
x & y \\
yz & zx
\end{vmatrix} = x \cdot zx - y \cdot yz = x^2z - y^2z
\]
Substituting these back into the determinant:
\[
= a(xy^2 - z^2x) - b(x^2y - z^2y) + c(x^2z - y^2z)
\]
### Step 4: Simplify the expression
Expanding the expression:
\[
= axy^2 - az^2x - bx^2y + bz^2y + cx^2z - cy^2z
\]
Combining like terms:
\[
= (a - b)x^2y + (b - c)z^2y + czx^2
\]
### Step 5: Compare the two determinants
Now we compare the two simplified determinants:
1. From the first matrix: \( (ax - by)y^2 + (by - cz)z^2 + czx^2 \)
2. From the second matrix: \( (a - b)x^2y + (b - c)z^2y + czx^2 \)
By inspection, we can see that the terms do not match, indicating that the two determinants are not equal.
### Conclusion
Thus, the statement \( |(ax, by, cz), (x^2, y^2, z^2), (1, 1, 1)| = |(a, b, c), (x, y, z), (yz, zx, xy)| \) is **False**.