Home
Class 12
MATHS
|(ax,by,cz),(x^2,y^2,z^2),(1,1,1)|=|(a,b...

`|(ax,by,cz),(x^2,y^2,z^2),(1,1,1)|=|(a,b,c),(x,y,z),(yz,zx,xy)|`. True or False

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the statement \( |(ax, by, cz), (x^2, y^2, z^2), (1, 1, 1)| = |(a, b, c), (x, y, z), (yz, zx, xy)| \) is true or false, we will calculate the determinants of both matrices and compare them. ### Step 1: Calculate the determinant of the first matrix The first matrix is: \[ \begin{vmatrix} ax & by & cz \\ x^2 & y^2 & z^2 \\ 1 & 1 & 1 \end{vmatrix} \] We will expand this determinant using the first row: \[ = ax \begin{vmatrix} y^2 & z^2 \\ 1 & 1 \end{vmatrix} - by \begin{vmatrix} x^2 & z^2 \\ 1 & 1 \end{vmatrix} + cz \begin{vmatrix} x^2 & y^2 \\ 1 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: \[ \begin{vmatrix} y^2 & z^2 \\ 1 & 1 \end{vmatrix} = y^2 - z^2 \] \[ \begin{vmatrix} x^2 & z^2 \\ 1 & 1 \end{vmatrix} = x^2 - z^2 \] \[ \begin{vmatrix} x^2 & y^2 \\ 1 & 1 \end{vmatrix} = x^2 - y^2 \] Substituting these back into the determinant: \[ = ax(y^2 - z^2) - by(x^2 - z^2) + cz(x^2 - y^2) \] ### Step 2: Simplify the expression Expanding the expression: \[ = axy^2 - axz^2 - bxy^2 + byz^2 + czx^2 - czy^2 \] Combining like terms: \[ = (ax - by)y^2 + (by - cz)z^2 + czx^2 \] ### Step 3: Calculate the determinant of the second matrix The second matrix is: \[ \begin{vmatrix} a & b & c \\ x & y & z \\ yz & zx & xy \end{vmatrix} \] We will expand this determinant using the first row: \[ = a \begin{vmatrix} y & z \\ zx & xy \end{vmatrix} - b \begin{vmatrix} x & z \\ yz & xy \end{vmatrix} + c \begin{vmatrix} x & y \\ yz & zx \end{vmatrix} \] Calculating the 2x2 determinants: \[ \begin{vmatrix} y & z \\ zx & xy \end{vmatrix} = y \cdot xy - z \cdot zx = xy^2 - z^2x \] \[ \begin{vmatrix} x & z \\ yz & xy \end{vmatrix} = x \cdot xy - z \cdot yz = x^2y - z^2y \] \[ \begin{vmatrix} x & y \\ yz & zx \end{vmatrix} = x \cdot zx - y \cdot yz = x^2z - y^2z \] Substituting these back into the determinant: \[ = a(xy^2 - z^2x) - b(x^2y - z^2y) + c(x^2z - y^2z) \] ### Step 4: Simplify the expression Expanding the expression: \[ = axy^2 - az^2x - bx^2y + bz^2y + cx^2z - cy^2z \] Combining like terms: \[ = (a - b)x^2y + (b - c)z^2y + czx^2 \] ### Step 5: Compare the two determinants Now we compare the two simplified determinants: 1. From the first matrix: \( (ax - by)y^2 + (by - cz)z^2 + czx^2 \) 2. From the second matrix: \( (a - b)x^2y + (b - c)z^2y + czx^2 \) By inspection, we can see that the terms do not match, indicating that the two determinants are not equal. ### Conclusion Thus, the statement \( |(ax, by, cz), (x^2, y^2, z^2), (1, 1, 1)| = |(a, b, c), (x, y, z), (yz, zx, xy)| \) is **False**.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |1 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |26 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |21 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

Prove that |{:(ax,,by,,cz),(x^(2),,y^(2),,z^(2)),(1,,1,,1):}|=|{:(a,,c,,c),(x,,y,,z),(yz,,xz,,xy):}|

Prove that |{:(x,y,z),(x^2,y^2,z^2),(yz,zy,xy):}|=|{:(1,1,1),(x^2,y^2,z^2),(x^3,y^3,z^3):}|=(y-z)(z-x)(x-y)(yz+zy+xy)

Knowledge Check

  • Let Delta_(1)=|{:(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1):}| and Delta_(2)=|{:(A,B,C),(x,y,z),(yz,zx,xy):}| , then :

    A
    `Delta_(1)=-Delta`
    B
    `Delta ne Delta_(1)`
    C
    `Delta-Delta_(1)=0`
    D
    None of these
  • |(x^2,x^2-(y-z)^2,yz),(y^2,y^2-(z-x)^2,zx),(z^2,z^2-(x-y)^2,xy)|

    A
    `(x-y)(y-z)(z-x)sumx`
    B
    `(x-y)(y-z)(z-x)sumxy`
    C
    `(x-y)(y-z)(z-x)sumx^2`
    D
    `(x-y)(y-z)(z-x)(sumx^2)sumx`
  • If Delta=|(1,x,x^2),(1,y,y^2),(1,z,z^2| and Delta_1=|(1,1,1),(yz,zx,xy),(x,y,z)| , then the value of Delta+Delta_1 is

    A
    `Delta*Delta_1`
    B
    1
    C
    0
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    |[1/x,1/y,1/z],[x^(2),y^(2),z^(2)],[yz,zx,xy]|

    [[x,x^(2),yzy,y^(2),zxz,z^(2),xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

    (x-y-z)^(2)-(x^(2)+y^(2)+z^(2))=2(yz-zx-xy)

    " (d) "|[x,y,z],[x^(2),y^(2),z^(3)],[yz,zx,xy]|=|[1,1,1],[x^(3),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

    Suppose pont (x,y,z) in space satisfies the equation |(x^(2)+1,xy,xz),(yx,y^(2)+1,yz),(zx,zy,z^(2)+1)|=5 Then (x,y,z) lies on a