Home
Class 12
MATHS
If A,B and C are the angles of a triangl...

If A,B and C are the angles of a triangle and
`|{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinCsin^(2)C):}|` =0
then prove that `Delta` ABC must be isoceles.

A

isosceles

B

equilateral

C

right angled isosceles

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |3 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |1 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE) |7 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos

Similar Questions

Explore conceptually related problems

If A,B and C are the angles of a triangle and |{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinC+sin^(2)C):}| =0 then prove that Delta ABC must be isoceles.

In a Delta ABC |[1,1,1],[1+sinA,1+sinB,1+sinC][sinA+sin^2A,sinB+sin^2B,sinC+sin^2C]|=0

Knowledge Check

  • If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0 , then the triangle ABC is

    A
    isosceles
    B
    equilateral
    C
    right angled isosceles
    D
    none of these
  • In DeltaABC|(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinC+sin^(2)C)|=0 then DeltaABC is a/an

    A
    right angled triangle
    B
    equilateral triangle
    C
    isosceles triangle
    D
    scalene triangle
  • If in a triangle ABC, |{:(1, sin A ,sin^(2)A),(1,sin B , sin^(2)B),(1, sin C, sin^(2)C):}|= 0 then the triangle is

    A
    equilateral or isosceles
    B
    equilateral or right-angled
    C
    right angled or isosceles
    D
    None ot these
  • Similar Questions

    Explore conceptually related problems

    In a /_ABC, if |[1,1,1,1][1+sin A,1+sin B,1+sin Csin A+sin^(2)A,sin B+sin^(2)B,sin C+sin^(2)C]|= ,then prove that /_ABC is an isosceles triangle.

    If A ,B and C are the angles of an equilateral triangle, then the value of |{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB+sin^2B,sinC+sin^2C):}| is ...........

    det[[ In Delta ABC, if ,1,11+sin A,1+sin B,1+sin Csin A+sin^(2)B,sin B+sin^(2)C,sin C+sin^(2)A]]

    If (sinA+sinB+sinC)^(2)=sin^(2)A+sin^(2)B+sin^(2)C , then which one is true?

    If R be the circum radius of the triangle ABC then the value of R^3/((a-b)(b-c)(c-a))|(1,1,1),(sin A,sinB,sinC),(sin^2A,sin^2B,sin^2C)| is