Home
Class 12
MATHS
int(0)^(2pi) e^(cos x) cosx (sin x) dx=...

`int_(0)^(2pi) e^(cos x) cosx (sin x) dx`=

A

1

B

`pi`

C

`2pi`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{2\pi} e^{\cos x} \cos x \sin x \, dx, \] we will use a substitution method. Let's break down the solution step by step. ### Step 1: Substitution Let \( y = e^{\cos x} \). Then, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = e^{\cos x} (-\sin x) = -y \sin x. \] This implies: \[ dy = -y \sin x \, dx \quad \Rightarrow \quad \sin x \, dx = -\frac{dy}{y}. \] ### Step 2: Change the limits of integration When \( x = 0 \): \[ y = e^{\cos(0)} = e^{1} = e. \] When \( x = 2\pi \): \[ y = e^{\cos(2\pi)} = e^{1} = e. \] Thus, the limits of integration remain the same, from \( e \) to \( e \). ### Step 3: Rewrite the integral Now we can rewrite the integral \( I \): \[ I = \int_{e}^{e} y \cos x \left(-\frac{dy}{y}\right). \] This simplifies to: \[ I = -\int_{e}^{e} \cos x \, dy. \] ### Step 4: Evaluate the integral Since the limits of integration are the same (from \( e \) to \( e \)), the integral evaluates to zero: \[ I = 0. \] ### Final Result Thus, the value of the integral is: \[ \int_{0}^{2\pi} e^{\cos x} \cos x \sin x \, dx = 0. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) (cosx)/(3cos x+ sin x ) dx=

Evaluate the following integrals: int_(0)^(pi//2) (cosx)/(1+cos x+sin x)dx

int_(0)^( pi/2)e^(x)(cos x-sin x)dx=

int_(0)^((pi)/2)(cos2x)/(cosx+sinx)dx=

int_(0)^(pi//2) e^(x) cos x" " dx=

Let l= int_(0)^(pi//2)(cosx)/(a cos x+ b sinx)dx and J=int_(0)^(pi//2)(sin x)/(a cosx+b sin x )dx , where a gt 0 and b gt 0 Compute the values of l and j

int_(0)^(pi) e^(x) sin 2 x dx=

int_(0)^(pi//2) e^(x) (sin x + cos x) dx

If I_(1)=int_(0)^((pi)/(2))e^(sinx)(1+x cos x)dx and I_(2)=int_(0)^((pi)/(2))e^(cosx)(1-x sin x)dx, then [(I_(1))/(I_(2))] is equal to (where [x] denotes the greatest integer less than or equal to x)

The value of int_(0)^(2pi) |cos x -sin x|dx is

ML KHANNA-DEFINITE INTEGRAL-Problem set (5) (Multiple Choice Questions)
  1. The value of the integral overset(1)underset(-1)int (x-[2x])dx,is

    Text Solution

    |

  2. int(0)^(3//2) [x^(2)] dx=

    Text Solution

    |

  3. Evaluate : int(0)^(2)[x^(2)]dx

    Text Solution

    |

  4. int(0)^(3) [x^(3)-3x^(2) + 2x] dx=

    Text Solution

    |

  5. The value of int(-pi//2)^(199pi//2) sqrt((1+cos 2x))dx is

    Text Solution

    |

  6. The expression (underset(0)overset(n)int[x]dx)/(underset(0)overset(n)i...

    Text Solution

    |

  7. int(0)^(n^(2)) [sqrtx] dx=

    Text Solution

    |

  8. The value of int(0)^([x]) {x-[x]} dx is

    Text Solution

    |

  9. int(3)^(6) 2[x] dx is equal to

    Text Solution

    |

  10. If [.] denotes the greatest integer function, then int(0)^(oo) [2e^(-x...

    Text Solution

    |

  11. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  12. The value of the integral underset(e^(-1))overset(e^(2))int |(log(e)x)...

    Text Solution

    |

  13. int(1//e)^e |log x|dx=

    Text Solution

    |

  14. If [x] denotes the greatest integer function then int(0.5)^(4.5) [x] d...

    Text Solution

    |

  15. int(0)^(5) [x] dx= ….., where [x] denotes the greatest integer functio...

    Text Solution

    |

  16. The value of the integral int(0)^(2) x[x] dx is where [x] is greatest ...

    Text Solution

    |

  17. int(-1)^(3) {|x-1|+ [x]} dx with usual notations is

    Text Solution

    |

  18. The value of sum(n=1)^1000 int(n-1)^n e^(x-[x])dx, where [x] is the gr...

    Text Solution

    |

  19. int(0)^(2pi) e^(cos x) cosx (sin x) dx=

    Text Solution

    |

  20. int(0)^(pi//3) [sqrt3 tan x] dx, where [.] denotes the greatest intege...

    Text Solution

    |