Home
Class 12
MATHS
int(0)^(2pi) e^(cos x) cosx (sin x) dx=...

`int_(0)^(2pi) e^(cos x) cosx (sin x) dx`=

A

1

B

`pi`

C

`2pi`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{2\pi} e^{\cos x} \cos x \sin x \, dx, \] we will use a substitution method. Let's break down the solution step by step. ### Step 1: Substitution Let \( y = e^{\cos x} \). Then, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = e^{\cos x} (-\sin x) = -y \sin x. \] This implies: \[ dy = -y \sin x \, dx \quad \Rightarrow \quad \sin x \, dx = -\frac{dy}{y}. \] ### Step 2: Change the limits of integration When \( x = 0 \): \[ y = e^{\cos(0)} = e^{1} = e. \] When \( x = 2\pi \): \[ y = e^{\cos(2\pi)} = e^{1} = e. \] Thus, the limits of integration remain the same, from \( e \) to \( e \). ### Step 3: Rewrite the integral Now we can rewrite the integral \( I \): \[ I = \int_{e}^{e} y \cos x \left(-\frac{dy}{y}\right). \] This simplifies to: \[ I = -\int_{e}^{e} \cos x \, dy. \] ### Step 4: Evaluate the integral Since the limits of integration are the same (from \( e \) to \( e \)), the integral evaluates to zero: \[ I = 0. \] ### Final Result Thus, the value of the integral is: \[ \int_{0}^{2\pi} e^{\cos x} \cos x \sin x \, dx = 0. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int_(0)^(pi//2) (cosx)/(1+cos x+sin x)dx

int_(0)^( pi/2)e^(x)(cos x-sin x)dx=

Knowledge Check

  • int_(0)^(pi//2) (cosx)/(3cos x+ sin x ) dx=

    A
    `(3pi)/10 - 1/10 log 3`
    B
    `(3pi)/10 + 1/10 log 3`
    C
    `(3pi)/20 - 1/10 log 3`
    D
    `(3pi)/20 + 1/10 log 3`
  • int_(0)^((pi)/2)(cos2x)/(cosx+sinx)dx=

    A
    `-1`
    B
    1
    C
    0
    D
    2
  • int_(0)^(pi//2) e^(x) cos x" " dx=

    A
    `1/2(1-e^(pi/2))`
    B
    `1/2(e^(pi/2)-1)`
    C
    `1-e^(pi/2)`
    D
    `e^(pi/2) -1`
  • Similar Questions

    Explore conceptually related problems

    Let l= int_(0)^(pi//2)(cosx)/(a cos x+ b sinx)dx and J=int_(0)^(pi//2)(sin x)/(a cosx+b sin x )dx , where a gt 0 and b gt 0 Compute the values of l and j

    int_(0)^(pi//2) e^(x) (sin x + cos x) dx

    If I_(1)=int_(0)^((pi)/(2))e^(sinx)(1+x cos x)dx and I_(2)=int_(0)^((pi)/(2))e^(cosx)(1-x sin x)dx, then [(I_(1))/(I_(2))] is equal to (where [x] denotes the greatest integer less than or equal to x)

    int_(0)^(pi) e^(x) sin 2 x dx=

    The value of int_(0)^(2pi) |cos x -sin x|dx is