Home
Class 12
MATHS
int(0)^(pi//3) [sqrt3 tan x] dx, where [...

`int_(0)^(pi//3) [sqrt3 tan x] dx`, where [.] denotes the greatest integer function is

A

`(pi)/(2)- "tan"^(-2) (2)/(sqrt3)`

B

`(5pi)/(6) - "tan"^(-1) (2)/(sqrt3)`

C

`(5pi)/(6)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{3}} [\sqrt{3} \tan x] \, dx \), where \([.]\) denotes the greatest integer function, we will follow these steps: ### Step 1: Determine the range of \( \tan x \) from \( 0 \) to \( \frac{\pi}{3} \) The function \( \tan x \) is continuous and increasing in the interval \( \left[0, \frac{\pi}{3}\right] \). - At \( x = 0 \), \( \tan 0 = 0 \). - At \( x = \frac{\pi}{3} \), \( \tan \frac{\pi}{3} = \sqrt{3} \). Thus, \( \tan x \) varies from \( 0 \) to \( \sqrt{3} \) as \( x \) goes from \( 0 \) to \( \frac{\pi}{3} \). ### Step 2: Analyze \( \sqrt{3} \tan x \) Now, we analyze the expression \( \sqrt{3} \tan x \): - At \( x = 0 \), \( \sqrt{3} \tan 0 = 0 \). - At \( x = \frac{\pi}{3} \), \( \sqrt{3} \tan \frac{\pi}{3} = 3 \). Thus, \( \sqrt{3} \tan x \) varies from \( 0 \) to \( 3 \). ### Step 3: Determine the intervals for the greatest integer function We need to find the intervals where \( [\sqrt{3} \tan x] \) takes different integer values: - For \( 0 \leq \sqrt{3} \tan x < 1 \): This occurs when \( 0 \leq \tan x < \frac{1}{\sqrt{3}} \), which corresponds to \( 0 \leq x < \frac{\pi}{6} \). - For \( 1 \leq \sqrt{3} \tan x < 2 \): This occurs when \( \frac{1}{\sqrt{3}} \leq \tan x < \frac{2}{\sqrt{3}} \), which corresponds to \( \frac{\pi}{6} \leq x < \tan^{-1}\left(\frac{2}{\sqrt{3}}\right) \). - For \( 2 \leq \sqrt{3} \tan x < 3 \): This occurs when \( \frac{2}{\sqrt{3}} \leq \tan x < \sqrt{3} \), which corresponds to \( \tan^{-1}\left(\frac{2}{\sqrt{3}}\right) \leq x < \frac{\pi}{3} \). ### Step 4: Set up the integral based on intervals Now we can set up the integral: \[ \int_{0}^{\frac{\pi}{3}} [\sqrt{3} \tan x] \, dx = \int_{0}^{\frac{\pi}{6}} 0 \, dx + \int_{\frac{\pi}{6}}^{\tan^{-1}\left(\frac{2}{\sqrt{3}}\right)} 1 \, dx + \int_{\tan^{-1}\left(\frac{2}{\sqrt{3}}\right)}^{\frac{\pi}{3}} 2 \, dx \] ### Step 5: Evaluate the integrals 1. **First Integral**: \[ \int_{0}^{\frac{\pi}{6}} 0 \, dx = 0 \] 2. **Second Integral**: \[ \int_{\frac{\pi}{6}}^{\tan^{-1}\left(\frac{2}{\sqrt{3}}\right)} 1 \, dx = \tan^{-1}\left(\frac{2}{\sqrt{3}}\right) - \frac{\pi}{6} \] 3. **Third Integral**: \[ \int_{\tan^{-1}\left(\frac{2}{\sqrt{3}}\right)}^{\frac{\pi}{3}} 2 \, dx = 2 \left( \frac{\pi}{3} - \tan^{-1}\left(\frac{2}{\sqrt{3}}\right) \right) \] ### Step 6: Combine the results Combining all the results: \[ \int_{0}^{\frac{\pi}{3}} [\sqrt{3} \tan x] \, dx = 0 + \left( \tan^{-1}\left(\frac{2}{\sqrt{3}}\right) - \frac{\pi}{6} \right) + 2 \left( \frac{\pi}{3} - \tan^{-1}\left(\frac{2}{\sqrt{3}}\right) \right) \] \[ = \tan^{-1}\left(\frac{2}{\sqrt{3}}\right) - \frac{\pi}{6} + \frac{2\pi}{3} - 2\tan^{-1}\left(\frac{2}{\sqrt{3}}\right) \] \[ = -\tan^{-1}\left(\frac{2}{\sqrt{3}}\right) + \frac{2\pi}{3} - \frac{\pi}{6} \] \[ = -\tan^{-1}\left(\frac{2}{\sqrt{3}}\right) + \frac{4\pi}{6} - \frac{\pi}{6} \] \[ = -\tan^{-1}\left(\frac{2}{\sqrt{3}}\right) + \frac{3\pi}{6} \] \[ = \frac{\pi}{2} - \tan^{-1}\left(\frac{2}{\sqrt{3}}\right) \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{3}} [\sqrt{3} \tan x] \, dx = \frac{\pi}{2} - \tan^{-1}\left(\frac{2}{\sqrt{3}}\right) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^((pi)/(3))[sqrt(3)tan x]dx( where [.] denotes the greatest integer function.) is:

Evaluate: int_(0)^((5 pi)/(12))[tan x]dx, where [.] denotes the greatest integer function.

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

Evaluate: int_(0)^(2 pi)[sin x]dx, where [.] denotes the greatest integer function.

The value of the constant a gt 0 such that int_(0)^(a) [tan^(-1)sqrt(x)]dx=int_(0)^(a) [cot^(-1)sqrt(x)]dx , where[.] denotes the greatest integer function, is

The value of the integral I=int_(0)^(pi)[|sinx|+|cosx|]dx, (where [.] denotes the greatest integer function) is equal to

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

The value of (1)/(pi)int_(2 pi)^(0)[sqrt(2)sin x]dx where [.] denotes greatest integer function is

The value of int_(0)^(2pi)[sin 2x(1+cos 3x)]dx , where [t] denotes the greatest integer function, is:

ML KHANNA-DEFINITE INTEGRAL-Problem set (5) (Multiple Choice Questions)
  1. The value of the integral overset(1)underset(-1)int (x-[2x])dx,is

    Text Solution

    |

  2. int(0)^(3//2) [x^(2)] dx=

    Text Solution

    |

  3. Evaluate : int(0)^(2)[x^(2)]dx

    Text Solution

    |

  4. int(0)^(3) [x^(3)-3x^(2) + 2x] dx=

    Text Solution

    |

  5. The value of int(-pi//2)^(199pi//2) sqrt((1+cos 2x))dx is

    Text Solution

    |

  6. The expression (underset(0)overset(n)int[x]dx)/(underset(0)overset(n)i...

    Text Solution

    |

  7. int(0)^(n^(2)) [sqrtx] dx=

    Text Solution

    |

  8. The value of int(0)^([x]) {x-[x]} dx is

    Text Solution

    |

  9. int(3)^(6) 2[x] dx is equal to

    Text Solution

    |

  10. If [.] denotes the greatest integer function, then int(0)^(oo) [2e^(-x...

    Text Solution

    |

  11. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  12. The value of the integral underset(e^(-1))overset(e^(2))int |(log(e)x)...

    Text Solution

    |

  13. int(1//e)^e |log x|dx=

    Text Solution

    |

  14. If [x] denotes the greatest integer function then int(0.5)^(4.5) [x] d...

    Text Solution

    |

  15. int(0)^(5) [x] dx= ….., where [x] denotes the greatest integer functio...

    Text Solution

    |

  16. The value of the integral int(0)^(2) x[x] dx is where [x] is greatest ...

    Text Solution

    |

  17. int(-1)^(3) {|x-1|+ [x]} dx with usual notations is

    Text Solution

    |

  18. The value of sum(n=1)^1000 int(n-1)^n e^(x-[x])dx, where [x] is the gr...

    Text Solution

    |

  19. int(0)^(2pi) e^(cos x) cosx (sin x) dx=

    Text Solution

    |

  20. int(0)^(pi//3) [sqrt3 tan x] dx, where [.] denotes the greatest intege...

    Text Solution

    |