Home
Class 12
MATHS
int(0)^(pi//3) [sqrt3 tan x] dx, where [...

`int_(0)^(pi//3) [sqrt3 tan x] dx`, where [.] denotes the greatest integer function is

A

`(pi)/(2)- "tan"^(-2) (2)/(sqrt3)`

B

`(5pi)/(6) - "tan"^(-1) (2)/(sqrt3)`

C

`(5pi)/(6)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{3}} [\sqrt{3} \tan x] \, dx \), where \([.]\) denotes the greatest integer function, we will follow these steps: ### Step 1: Determine the range of \( \tan x \) from \( 0 \) to \( \frac{\pi}{3} \) The function \( \tan x \) is continuous and increasing in the interval \( \left[0, \frac{\pi}{3}\right] \). - At \( x = 0 \), \( \tan 0 = 0 \). - At \( x = \frac{\pi}{3} \), \( \tan \frac{\pi}{3} = \sqrt{3} \). Thus, \( \tan x \) varies from \( 0 \) to \( \sqrt{3} \) as \( x \) goes from \( 0 \) to \( \frac{\pi}{3} \). ### Step 2: Analyze \( \sqrt{3} \tan x \) Now, we analyze the expression \( \sqrt{3} \tan x \): - At \( x = 0 \), \( \sqrt{3} \tan 0 = 0 \). - At \( x = \frac{\pi}{3} \), \( \sqrt{3} \tan \frac{\pi}{3} = 3 \). Thus, \( \sqrt{3} \tan x \) varies from \( 0 \) to \( 3 \). ### Step 3: Determine the intervals for the greatest integer function We need to find the intervals where \( [\sqrt{3} \tan x] \) takes different integer values: - For \( 0 \leq \sqrt{3} \tan x < 1 \): This occurs when \( 0 \leq \tan x < \frac{1}{\sqrt{3}} \), which corresponds to \( 0 \leq x < \frac{\pi}{6} \). - For \( 1 \leq \sqrt{3} \tan x < 2 \): This occurs when \( \frac{1}{\sqrt{3}} \leq \tan x < \frac{2}{\sqrt{3}} \), which corresponds to \( \frac{\pi}{6} \leq x < \tan^{-1}\left(\frac{2}{\sqrt{3}}\right) \). - For \( 2 \leq \sqrt{3} \tan x < 3 \): This occurs when \( \frac{2}{\sqrt{3}} \leq \tan x < \sqrt{3} \), which corresponds to \( \tan^{-1}\left(\frac{2}{\sqrt{3}}\right) \leq x < \frac{\pi}{3} \). ### Step 4: Set up the integral based on intervals Now we can set up the integral: \[ \int_{0}^{\frac{\pi}{3}} [\sqrt{3} \tan x] \, dx = \int_{0}^{\frac{\pi}{6}} 0 \, dx + \int_{\frac{\pi}{6}}^{\tan^{-1}\left(\frac{2}{\sqrt{3}}\right)} 1 \, dx + \int_{\tan^{-1}\left(\frac{2}{\sqrt{3}}\right)}^{\frac{\pi}{3}} 2 \, dx \] ### Step 5: Evaluate the integrals 1. **First Integral**: \[ \int_{0}^{\frac{\pi}{6}} 0 \, dx = 0 \] 2. **Second Integral**: \[ \int_{\frac{\pi}{6}}^{\tan^{-1}\left(\frac{2}{\sqrt{3}}\right)} 1 \, dx = \tan^{-1}\left(\frac{2}{\sqrt{3}}\right) - \frac{\pi}{6} \] 3. **Third Integral**: \[ \int_{\tan^{-1}\left(\frac{2}{\sqrt{3}}\right)}^{\frac{\pi}{3}} 2 \, dx = 2 \left( \frac{\pi}{3} - \tan^{-1}\left(\frac{2}{\sqrt{3}}\right) \right) \] ### Step 6: Combine the results Combining all the results: \[ \int_{0}^{\frac{\pi}{3}} [\sqrt{3} \tan x] \, dx = 0 + \left( \tan^{-1}\left(\frac{2}{\sqrt{3}}\right) - \frac{\pi}{6} \right) + 2 \left( \frac{\pi}{3} - \tan^{-1}\left(\frac{2}{\sqrt{3}}\right) \right) \] \[ = \tan^{-1}\left(\frac{2}{\sqrt{3}}\right) - \frac{\pi}{6} + \frac{2\pi}{3} - 2\tan^{-1}\left(\frac{2}{\sqrt{3}}\right) \] \[ = -\tan^{-1}\left(\frac{2}{\sqrt{3}}\right) + \frac{2\pi}{3} - \frac{\pi}{6} \] \[ = -\tan^{-1}\left(\frac{2}{\sqrt{3}}\right) + \frac{4\pi}{6} - \frac{\pi}{6} \] \[ = -\tan^{-1}\left(\frac{2}{\sqrt{3}}\right) + \frac{3\pi}{6} \] \[ = \frac{\pi}{2} - \tan^{-1}\left(\frac{2}{\sqrt{3}}\right) \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{3}} [\sqrt{3} \tan x] \, dx = \frac{\pi}{2} - \tan^{-1}\left(\frac{2}{\sqrt{3}}\right) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^((pi)/(3))[sqrt(3)tan x]dx( where [.] denotes the greatest integer function.) is:

Evaluate: int_(0)^((5 pi)/(12))[tan x]dx, where [.] denotes the greatest integer function.

Knowledge Check

  • int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

    A
    `pi`
    B
    `2pi`
    C
    `pi//sqrt(2)`
    D
    `pi sqrt(2)`
  • The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

    A
    `tan 1`
    B
    `10 pi`
    C
    `10 pi -tan 1`
    D
    None of these
  • The value of the constant a gt 0 such that int_(0)^(a) [tan^(-1)sqrt(x)]dx=int_(0)^(a) [cot^(-1)sqrt(x)]dx , where[.] denotes the greatest integer function, is

    A
    `(2(3+cos4))/(1-cos4)`
    B
    `(2(3-cos4))/(1+cos4)`
    C
    `(2(3-cos4))/(1-cos4)`
    D
    `(2(3+cos4))/(1+cos4)`
  • Similar Questions

    Explore conceptually related problems

    Evaluate: int_(0)^(2 pi)[sin x]dx, where [.] denotes the greatest integer function.

    The value of (1)/(pi)int_(2 pi)^(0)[sqrt(2)sin x]dx where [.] denotes greatest integer function is

    The value of the integral I=int_(0)^(pi)[|sinx|+|cosx|]dx, (where [.] denotes the greatest integer function) is equal to

    int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

    The value of int_(0)^(2pi)[sin 2x(1+cos 3x)]dx , where [t] denotes the greatest integer function, is: