Home
Class 12
MATHS
(cot""A/2+cot""B/2+cot"C/2)/(cot A+cotB+...

`(cot""A/2+cot""B/2+cot"C/2)/(cot A+cotB+cotC)=((a+b+c)^2)/(a^2+b^2+c^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the equation \[ \frac{\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}}{\cot A + \cot B + \cot C} = \frac{(a+b+c)^2}{a^2+b^2+c^2} \] we will start with the left-hand side (LHS) and simplify it step by step. ### Step 1: Express cotangent of half angles Using the formula for cotangent of half angles, we have: \[ \cot \frac{A}{2} = \frac{s(s-a)}{\Delta}, \quad \cot \frac{B}{2} = \frac{s(s-b)}{\Delta}, \quad \cot \frac{C}{2} = \frac{s(s-c)}{\Delta} \] where \( s = \frac{a+b+c}{2} \) (the semi-perimeter) and \( \Delta \) is the area of the triangle. ### Step 2: Substitute into LHS Substituting these into the LHS gives: \[ \cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2 = \frac{s(s-a)}{\Delta} + \frac{s(s-b)}{\Delta} + \frac{s(s-c)}{\Delta} \] Combining these terms yields: \[ \frac{s[(s-a) + (s-b) + (s-c)]}{\Delta} = \frac{s[3s - (a+b+c)]}{\Delta} = \frac{s[3s - 2s]}{\Delta} = \frac{s^2}{\Delta} \] ### Step 3: Express cotangent of angles Next, we express \( \cot A, \cot B, \cot C \): \[ \cot A = \frac{b^2 + c^2 - a^2}{4\Delta}, \quad \cot B = \frac{c^2 + a^2 - b^2}{4\Delta}, \quad \cot C = \frac{a^2 + b^2 - c^2}{4\Delta} \] ### Step 4: Substitute into denominator Substituting these into the denominator gives: \[ \cot A + \cot B + \cot C = \frac{(b^2 + c^2 - a^2) + (c^2 + a^2 - b^2) + (a^2 + b^2 - c^2)}{4\Delta} \] This simplifies to: \[ \frac{2(a^2 + b^2 + c^2)}{4\Delta} = \frac{a^2 + b^2 + c^2}{2\Delta} \] ### Step 5: Combine LHS Now, substituting the results from Steps 2 and 4 into the LHS: \[ \text{LHS} = \frac{\frac{s^2}{\Delta}}{\frac{a^2 + b^2 + c^2}{2\Delta}} = \frac{s^2 \cdot 2}{a^2 + b^2 + c^2} = \frac{2s^2}{a^2 + b^2 + c^2} \] ### Step 6: Substitute \( s \) Recall that \( s = \frac{a+b+c}{2} \), so: \[ s^2 = \left(\frac{a+b+c}{2}\right)^2 = \frac{(a+b+c)^2}{4} \] Thus, \[ \text{LHS} = \frac{2 \cdot \frac{(a+b+c)^2}{4}}{a^2 + b^2 + c^2} = \frac{(a+b+c)^2}{2(a^2 + b^2 + c^2)} \] ### Step 7: Final simplification To match the RHS, we need to multiply both sides by 2: \[ \text{RHS} = \frac{(a+b+c)^2}{a^2 + b^2 + c^2} \] Thus, we have proved that: \[ \frac{\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}}{\cot A + \cot B + \cot C} = \frac{(a+b+c)^2}{a^2 + b^2 + c^2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|2 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (4)(MULTIPLE CHOICE QUESTIONS)|55 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(MULTIPLE CHOICE QUESTIONS)|30 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC,prove that (cot((A)/(2))+cot((B)/(2))+cot((C)/(2)))/(cot A+cot B+cot(C))=((a+b+c)^(2))/(a^(2)+b^(2)+c^(2))

4Delta(cot A+cot B+cot C)=a^(2)+b^(2)+c^(2)

Knowledge Check

  • If A+B+C=180^@ , then (cot A +cotB +cotC)/(cot A cotBcotC) is equal to

    A
    1
    B
    `cot A cos B cot C`
    C
    `-1`
    D
    0
  • If A+B+C =180^@ ,then cotA+cotB+cot C)/(cot A cot B cot C) is equal to

    A
    1
    B
    cot A cot B cot C
    C
    -1
    D
    0
  • Similar Questions

    Explore conceptually related problems

    r_1 cot ""A/2=r_2 cot""B/2=r_3 cot""C/2=S

    In any Delta ABC, prove that,(sum cot((A)/(2)))/(sum cot A)=((a+b+c)^(2))/(a^(2)+b^(2)+c^(2))

    If A+B+C=pi , prove that : cot( A/2)+ cot(B/2) + cot( C/2) = cot( A/2) cot(B/2) cot(C/2)

    A+B+C=(pi)/(2)rArr cot A+cot B+cot C=

    In a DeltaABC , 2A(cot B + cot C)=

    cot((A)/(2))+cot((B)/(2))+cot((C)/(2))=cot((A)/(2))cot((B)/(2))cot((C)/(2))