Home
Class 12
MATHS
In a triangle the maximum value of cos A...

In a triangle the maximum value of `cos A +cos B+cos C` is.....

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of \( \cos A + \cos B + \cos C \) in a triangle, we can use some properties of triangles and trigonometric identities. ### Step-by-Step Solution: 1. **Understanding the Angles in a Triangle**: In any triangle, the sum of the angles \( A + B + C = 180^\circ \) or \( \pi \) radians. 2. **Using Trigonometric Identity**: We can express \( \cos A + \cos B + \cos C \) using the identity: \[ \cos A + \cos B + \cos C = 1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \] This identity relates the sum of the cosines of the angles to the product of the sines of half the angles. 3. **Applying AM-GM Inequality**: To find the maximum value of \( \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \), we can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality: \[ \frac{\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}}{3} \geq \sqrt[3]{\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}} \] 4. **Finding Maximum of Sine Terms**: Since \( A + B + C = \pi \), we can use the fact that the maximum value of \( \sin x \) occurs at \( x = \frac{\pi}{2} \). Thus, the maximum value of \( \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \) occurs when \( A = B = C = \frac{\pi}{3} \). 5. **Calculating the Maximum Value**: When \( A = B = C = \frac{\pi}{3} \): \[ \sin \frac{A}{2} = \sin \frac{\pi/3}{2} = \sin \frac{\pi}{6} = \frac{1}{2} \] Therefore, \[ \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} = \left(\frac{1}{2}\right)^3 = \frac{1}{8} \] 6. **Substituting Back to Find Cosine Sum**: Now substituting back into the cosine identity: \[ \cos A + \cos B + \cos C = 1 + 4 \cdot \frac{1}{8} = 1 + \frac{1}{2} = \frac{3}{2} \] ### Conclusion: Thus, the maximum value of \( \cos A + \cos B + \cos C \) in a triangle is \( \frac{3}{2} \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (4)(MULTIPLE CHOICE QUESTIONS)|55 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (4)(TRUE AND FALSE)|9 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(TRUE AND FALSE)|3 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

In Delta ABC, if cot A+cot B+cot C=0 then find the value of cos A cos B cos C.

In a Delta ABC, the value of (a cos A+b cos B+c cos C)/(a+b+c) is equal to

Knowledge Check

  • The maximum value of cos^(2)A+cos^(2)B-cos^(2)C, is

    A
    0
    B
    1
    C
    3
    D
    2
  • If A,B,C are the angles of triangle ABC, then the minimum value of |{:(-2,cos C , cos B),(cos C , -1, cos A ) , (cos B , cos A , -1):}| is equal to :

    A
    0
    B
    `-1`
    C
    1
    D
    `-2`
  • If A,B,C are the angles of triangle ABC, then the minimum value of |{:(-2,cos C , cos B),(cos C , -1, cos A ) , (cos B , cos A , -1):}| is equal to :

    A
    0
    B
    `-1`
    C
    1
    D
    `-2`
  • Similar Questions

    Explore conceptually related problems

    In any triangle ABC, prove that: a cos A+b cos B+c cos C=2a sin B sin C

    In a triangle ABC,cos A+cos B+cos C

    In any triangle,prove that b cos B+c cos C=a cos(B-C)

    In a triangle ABC , if cos A = cos B cos C , what is the value of tan A- tan B - tan C ?

    In a triangle ABC, cos A+cos B+cos C=