Home
Class 12
MATHS
STATEMENT -1 : tan^(-1)x=sin^(-1)yrArry ...

STATEMENT -1 : `tan^(-1)x=sin^(-1)yrArry in (-1,1)`
and
STATEMENT -2 : `-pi/2 lt tan^(-1)x lt pi/2`

A

Statement -1 is True, Statement-2 is True, Statement -2 is a correct explanation for Statement -1

B

Statement -1 is True, Statement -2 is True, Statement -2 is NOT a correct explanation for Statement -1

C

Statement-1 is True, Statement -2 is False

D

Statement -1 is False, Statement -2 is True

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - G)(INTEGER ANSWER TYPE QUESTIONS)|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - H)(MULTIPLE TRUE-FALSE TYPE QUESTIONS)|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - D)(LINKED COMPREHENSION TYPE QUESTIONS)|9 Videos
  • INTEGRALS

    AAKASH INSTITUTE|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)x+tan^(-1)x=(pi)/(2)

STATEMENT-1 : If tan^2 (sin^-1x) > 1 then x in(-1-1/sqrt2)uu(1/sqrt(2).1).STATEMENT-2 : The number of positive integral solution of tan^-1 1/y+cot^-1(1/x)=cot^-1(1/3), where x/y < 1, is 2. STATEMENT -3 : If sin^-1 x=-cos^-1 sqrt(1-x^2) and sin^-1 y=cos^-1 sqrt(1-y^2), then the exact range of (tan^-1 x+ tan6-1 y) is [-pi/4,pi/4].

Knowledge Check

  • STATEMENT -1 : The value of tan^(-1)x+tan^(-1)(1/x)=pi/2, AA x in R -{0} . and STATEMENT -2 : The value of tan^(-1).(1/x)={:{(cot^(-1)x,x gt0),(-pi+cot^(-1)x,x lt0):}

    A
    Statement -1 is True, Statement-2 is True, Statement -2 is a correct explanation for Statement -4
    B
    Statement -1 is True, Statement -2 is True, Statement -2 is NOT a correct explanation for Statement -4
    C
    Statement-1 is True, Statement -2 is False
    D
    Statement -1 is False, Statement -2 is True
  • If tan^(-1) x+tan^(-1) ""1/2 = pi/4 , " then " x=

    A
    `-3`
    B
    3
    C
    2
    D
    `1//3`
  • The values of x which satisfy 18(sin^(-1)x)^(2)-9pi sin^(-1)x +pi^(2)lt 0 and 18(tan^(-1)x)^(2)-9pi tan^(-1)x + pi^(2)lt 0 simultaneously are

    A
    `((sqrt(3))/(3),(sqrt(3))/(2))`
    B
    `((sqrt(3))/(2),1)`
    C
    `((1)/(3),(sqrt(3))/(2))`
    D
    `((1)/(sqrt(3)),sqrt(3))`
  • Similar Questions

    Explore conceptually related problems

    STATEMENT-1 : int_(0)^(oo)(dx)/(1+e^(x))=ln2-1 STATEMENT-2 : int_(0)^(oo)(sin(tan^(-1)))/(1+x^(2))dx=pi STATEMENT-3 : int_(0)^(pi^(2)//4)(sinsqrt(x))/(sqrt(x))dx=1

    If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to 4tan^(-1)x (b) 0 (c) pi/2 (d) pi

    Solve : tan^(-1)((cos x)/(1+sin x)) , -(pi)/(2) lt x lt (pi)/(2)

    If -pi/2 lt sin^(-1)x lt pi/2 , then tan(sin^(-1)x) is equal to

    Given that , tan^(-1) ((2x)/(1-x^(2))) = {{:(2 tan^(-1) x"," |x| le 1),(-pi +2 tan^(-1)x","x gt 1),(pi+2 tan^(-1)x"," x lt -1):} sin^(-1)((2x)/(1+x^(2))) ={{:(2 tan^(-1)x","|x|le1),(pi -2 tan^(-1)x","x gt 1 and ),(-(pi+2tan^(-1))","x lt -1):} sin^(-1) x + cos^(-1) x = pi//2 " for " - 1 le x le 1 sin^(-1) ((4x)/(x^(2)+4)) + 2 tan^(-1)( - x/2) is independent of x, then