Home
Class 12
MATHS
The sum of series 2[ 7^(-1)+3^(-1).7^(...

The sum of series ` 2[ 7^(-1)+3^(-1).7^(-3)+5^(-1).7^(-5)+...]` is

A

`log_(e)(4/3)`

B

`log_(e)(3/4)`

C

`2log_(e)(3/4)`

D

`2log_(e)(4/3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \( S = 2\left( 7^{-1} + 3^{-1} \cdot 7^{-3} + 5^{-1} \cdot 7^{-5} + \ldots \right) \), we can follow these steps: ### Step 1: Rewrite the series The series can be rewritten as: \[ S = 2\left( \frac{1}{7} + \frac{1}{3 \cdot 7^3} + \frac{1}{5 \cdot 7^5} + \ldots \right) \] ### Step 2: Identify the general term The general term of the series can be expressed as: \[ \frac{1}{(2n-1) \cdot 7^{2n-1}} \quad \text{for } n = 1, 2, 3, \ldots \] Thus, we can write: \[ S = 2 \sum_{n=1}^{\infty} \frac{1}{(2n-1) \cdot 7^{2n-1}} \] ### Step 3: Recognize the series This series resembles the Taylor series expansion for the logarithm. We know that: \[ \log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \] and \[ \log(1-x) = -\left( x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \ldots \right) \] ### Step 4: Use the logarithmic identity The difference between the logarithms gives us: \[ \log(1+x) - \log(1-x) = 2\left( x + \frac{x^3}{3} + \frac{x^5}{5} + \ldots \right) \] So we can express our series as: \[ \sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1} = \frac{1}{2} \left( \log(1+x) - \log(1-x) \right) \] ### Step 5: Substitute \( x = \frac{1}{7} \) Substituting \( x = \frac{1}{7} \): \[ \log\left(1 + \frac{1}{7}\right) - \log\left(1 - \frac{1}{7}\right) = \log\left(\frac{8}{6}\right) = \log\left(\frac{4}{3}\right) \] ### Step 6: Calculate the sum Thus, we have: \[ S = 2 \cdot \frac{1}{2} \log\left(\frac{4}{3}\right) = \log\left(\frac{4}{3}\right) \] ### Final Answer The sum of the series is: \[ \boxed{\log\left(\frac{4}{3}\right)} \]

To find the sum of the series \( S = 2\left( 7^{-1} + 3^{-1} \cdot 7^{-3} + 5^{-1} \cdot 7^{-5} + \ldots \right) \), we can follow these steps: ### Step 1: Rewrite the series The series can be rewritten as: \[ S = 2\left( \frac{1}{7} + \frac{1}{3 \cdot 7^3} + \frac{1}{5 \cdot 7^5} + \ldots \right) \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 29|1 Videos
  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 30|1 Videos
  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 27|1 Videos
  • PROBABILITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|4 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|30 Videos

Similar Questions

Explore conceptually related problems

The sum of the series (5)/(1.2.3)+(7)/(3.4.5)+(9)/(5.6.7)+.... is equal to

77.The sum of the series 1.3^(2)+2.5^(2)+3.7^(2)+.... upto 25 terms

Knowledge Check

  • The sum of the series (1)/(1*2*3)+(1)/(3*4*5)+(1)/(5*6*7)+. . . is

    A
    `log_(e)2-1/2`
    B
    `log_(e)2`
    C
    `log_(e)2/2-1/2`
    D
    `log_(e)2+1`
  • The sum of the series (1)/(2.3) + (1)/(4.5) + (1)/(6.7) + ...oo=

    A
    `log (2e)`
    B
    `log (e//2)`
    C
    `log (4//e)`
    D
    none
  • The sum of the series (5)/(1*2*3)+(7)/(3*4*5)+(9)/(5*6*7)+ . . . is

    A
    `"log"(8)/(e)`
    B
    `"log"(e)/(8)`
    C
    `log mn`
    D
    `"log" (m)/(n)`
  • Similar Questions

    Explore conceptually related problems

    The sum of the infinite series is (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+...oo(A)(1)/(7)(B)(1)/(3)(C)(1)/(5) (D) (1)/(2)

    Find the sum of the series 1.3^(2)+2.5^(2)+3.7^(2)+......

    STATEMENT -1: The tens digit of 1! + 2! + 3! + 4! + 5! +........... + 50! is 1. STATEMENT-2 : The sum of divisors of 2^(4)3^(5)5^(2)7^(3) is 2^(5).3^(6).5^(3).7^(4) - 2.3.5.7.

    Sum of n terms of the series 1^(3) + 3^(3) + 5^(3) + 7^(3) +… is

    The sum of the series 1+(3)/(2!)+(7)/(3!)+(15)/(4!)+. . . is