Home
Class 12
MATHS
if x=phi(t) and intf(x)dx=F(x) then intf...

if `x=phi(t)` and `intf(x)dx=F(x)` then `intf(phi(t))phi'(t)dt=` (A) `phi(x)` (B) `F(t)` (C) `F(x)` (D) `F^(')(x)`

Text Solution

Verified by Experts

`x=phi(t)` is differentiable function of t.
`therefore (dx)/(dt)=phi(t)`
`Let intf(x)dx=F(x) therefore (d)/(dx)[F(x)[=f(x)`
`therefore` by the chain rule.
`(d)/(dt)[F(x)]=(d)/(dx)[F(x)].(dx)/(dt)`
`=f(x).(dx)/(dt)=f[phi (t)].phi(t)`
`therefore` by the definition of integral,
`F(x)=intf[phi(t)].phi(t)dt`
`therefore intf(x)dx=intf[phi(t).phi'(t)dt.`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Example For Practice|128 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|15 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|15 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos
  • LINE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|9 Videos

Similar Questions

Explore conceptually related problems

if x=phi(t) and int f(x)dx=F(x) then int f(phi(t))phi'(t)dt=(A)phi(x)(B)F(t)(C)F(x)(D)F'(x)

If phi(x)=f(x)+xf'(x) then int phi(x)dx is equal to

Knowledge Check

  • If intf(x)dx=f(x)+c," then " f(x)=

    A
    `x^( e)`
    B
    `e^( x)`
    C
    `log|x|`
    D
    `(1)/(x)`
  • If intf(x)dx=2 {f(x)}^(3)+C , then f (x) is

    A
    `(x)/(2)`
    B
    `x^(3)`
    C
    `(1)/(sqrt(x))`
    D
    `sqrt((x)/(3))`
  • If (d)/(dx)[f(x)]=f(x), then intf(x)[g'(x)+g''(x)]dx=

    A
    `f(x)g(x)+c`
    B
    `f'(x)g(x)+c`
    C
    `f(x)g'(x)+c`
    D
    `f'(x)g'(x)+c`
  • Similar Questions

    Explore conceptually related problems

    If f(-x)+f(x)=0 then int_(a)^(x)f(t)dt is

    Let phi(x,t)={(x(t-1),xlet),(t(x-1), tltx):} , where t is a continuous function of x in [0,1] . Let g(x)=int_0^1 f(t)phi(x,t)dt , then g\'\'(x) = (A) g(0)=1 (B) g(0)=0 (C) g(1)=1 (D) g\'\'(x)=f(x)

    int e^(x){f(x)-f'(x)}dx=phi(x), then int e^(x)f(x)dx is

    If f(x)=x^(3)-x and phi (x)= sin 2x , then

    int (f(x) phi' (x) - f'(x) phi(x))/(f(x) . phi(x)) [log phi (x) - log f(x)] dx =